Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
76
всего попыток:
213
В прямоугольном треугольнике точка P лежит на катете BC, а точка Q — на гипотенузе AB. Найдите наименьшую возможную длину незамкнутой ломаной APQ, если известно, что AC=700, BC=2400.
Задачу решили:
81
всего попыток:
131
Найдите наименьшее натуральное число, не делящееся на 11, и такое, что при замене любой его (но только одной) цифры на любую цифру, отличающуюся от выбранной на 1, получается число, делящееся на 11. (Например, число 10 этому условию не удовлетворяет: 11 делится на 11, 00=0 тоже, а вот 20 — нет!)
(Физико-мамематический лицей №239)
Задачу решили:
69
всего попыток:
128
В треугольнике ABC с площадью 72 один из углов равен 60°, а радиус описанной окружности в 3 раза больше радиуса вписанной, которая касается сторон треугольника в точках K, L и M. Найдите площадь треугольника KLM.
Задачу решили:
100
всего попыток:
389
Сколько решений в натуральных числах имеет уравнение 1/x+1/y=1/2010?
Задачу решили:
100
всего попыток:
214
На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?
Задачу решили:
121
всего попыток:
172
Найдите минимальное значение выражения , где x и y — произвольные действительные числа.
Задачу решили:
99
всего попыток:
123
Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?
Задачу решили:
163
всего попыток:
284
Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)
Задачу решили:
90
всего попыток:
436
На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
79
всего попыток:
153
Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n2−13n+47, если n пробегает все целые числа от −20102010 до 20102010?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|