img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 38
всего попыток: 49
Задача опубликована: 08.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите наибольшее p при котором уравнение
(x2-p)1/2+2(x2-1)1/2=x
имеет действительные корни. 

Задачу решили: 22
всего попыток: 41
Задача опубликована: 14.08.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Длина стороны равностороннего треугольника равна d. Внутри треугольника есть точка, расстояния от которой до вершин треугольника равны a, b, c.

Найдите полином 4-й степени от 4-х переменных a, b, c, d, для которого выполняется: P(a,b,c,d)=0 для любого равностороннего треугольника и любой точки внутри него.

В качестве ответа введите сумму абсолютных величин всех его коэффициентов, если коэффициент при d4 равен 1.

Задачу решили: 26
всего попыток: 45
Задача опубликована: 26.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой  у=2020-х2 и осью Ох?

Задачу решили: 32
всего попыток: 35
Задача опубликована: 07.09.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите многочлен наименьшей степени с целыми коэффициентами и коэффициенте 1 при старшей степени, корнем которого явлется число 21/2+31/2. В качестве ответа введите сумму его коэффициентов.

Задачу решили: 29
всего попыток: 36
Задача опубликована: 09.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Учитель дал детям три задачи: A, B, C. 25 школьников решили хотя бы одну задачу. Среди школьников, не решивших задачу A, но решивших B, в два раза больше, чем решивших C. Школьников, решивших только задачу A, на одного больше, чем остальных школьников, решивших задачу A. Сколько школьников решили только задачу B, если среди школьников, решивших только одну задачу, половина не решила задачу A?

Задачу решили: 31
всего попыток: 32
Задача опубликована: 16.10.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

На олимпиаде, которая длилась n дней, было вручено m медалей. В первый день была вручена одна медаль и еще 1/7 от оставшихся m-1 медалей. Во второй день были вручены две медали и еще 1/7 от оставшихся после этого медалей и т. д. Наконец, в n-й день были вручены оставшиеся n медалей. Сколько было всего медалей вручено? 

Задачу решили: 36
всего попыток: 54
Задача опубликована: 28.10.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда.

Спирали

В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.

Задачу решили: 31
всего попыток: 36
Задача опубликована: 16.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Для действительных x, y, z, t верны соотношения
x+y+z=t,
1/x+1/y+1/z=1/t,
x3+y3+z3=10003

Найдите сумму x+y+z+t.

Задачу решили: 28
всего попыток: 35
Задача опубликована: 18.11.20 08:00
Прислал: solomon img
Источник: Ленинградская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В системе уравнений:
x2=a+(y-z)2,
y2=b+(z-x)2,
z2=c+(x-y)2,
a, b и c - различные натуральные числа, x,y и z - различные целые числа. Найти наименьшую сумму а+b+c.

Задачу решили: 32
всего попыток: 53
Задача опубликована: 20.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть x, y и z - целые числа и x/(y + z) + y/(z + x) + z/(x + y) = 4. Найдите наименьшее положительное значение x+y+z.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.