Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
155
Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.
Задачу решили:
87
всего попыток:
127
В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?
Задачу решили:
57
всего попыток:
112
Марина пришла в казино и решила сыграть в следующую игру. На 100 карточках с обеих сторон написаны (по разу) все натуральные числа от 1 до 200. Карточки выложены на стол так, что видны только числа, написанные сверху. Марина может выбрать несколько карточек и одновременно перевернуть их, а затем сложить все 100 чисел, которые окажутся после этого наверху — полученная сумма и будет её выигрышем. Какую наибольшую сумму Марина может гарантированно выиграть?
Задачу решили:
72
всего попыток:
256
Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?
Задачу решили:
64
всего попыток:
178
Сколько различных чисел встречается среди чисел [12/n], [22/n], [32/n], ..., [(n−1)2/n], [n2/n] (где [x] — целая часть числа x)? В ответе укажите последнюю цифру при n=20112011.
Задачу решили:
57
всего попыток:
246
У Вас есть 200 одинаковых на вид, вес и ощупь шариков, ровно один из которых радиоактивен. Ещё имеется автомат, в который можно засунуть сколько угодно шариков, бросить 30 рублей и нажать кнопку. Если радиактивности нет, то загорается зелёная лампочка и автомат выдаёт 10 рублей сдачи. Если же обнаруживается радиоактивность, то загорается красная лампочка и никакой сдачи не выдаётся. Какой наименьшей суммой в рублях Вы должны располагать, чтобы гарантированно (т.е. при полном отсутствии везения) найти радиоактивный шарик?
Задачу решили:
23
всего попыток:
80
Какое наименьшее число прямолинейных разрезов нужно сделать, чтобы уложить прямоугольный торт 25 см на 36 см в квадратную коробку 30 см на 30 см? (Одним разрезом можно резать только один кусок торта!) В ответе опишите, как именно следует разрезать торт, но лучше всего просто пришлите рисунок.
Задачу решили:
31
всего попыток:
70
Разбиение прямоугольного треугольника со сторонами 390, 520 и 650 его средними линиями на 4 части имеет диаметр 325. (Диаметр разбиения — это наименьшее из всех чисел, каждое из которых больше или равно расстоянию между любыми двумя точками из одной части разбиения.) Найдите минимальный диаметр разбиения этого треугольника на 4 части.
Задачу решили:
36
всего попыток:
193
Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?
Задачу решили:
109
всего попыток:
131
В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|