img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 49
Задача опубликована: 30.11.20 08:00
Прислал: avilow img
Источник: По мотивам книги И.М. Гельфанд "Функции и гра...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье).

Функции и графики

Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами.

В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами. 

Задачу решили: 30
всего попыток: 49
Задача опубликована: 04.12.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.

Задачу решили: 22
всего попыток: 31
Задача опубликована: 25.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Пусть x1, x2, x3, x4, x5 - натуральные числа, которые удовлетворяют соотношениям:
x1 + x2 + x3 + x4 + x5 = 1000,
x1 - x2 + x3 - x4 + x5 > 0,
x1 + x2 - x3 + x4 - x5 > 0,
-x1 + x2 + x3 - x4 + x5 > 0,
x1 - x2 + x3 + x4 - x5 > 0,
-x1 + x2 - x3 + x4 + x5 > 0,
и при этом значение (x1 + x3)x2+x4 - наибольшее.

Скольким сушествует таких различных наборов (x1, x2, x3, x4, x5)?

Задачу решили: 35
всего попыток: 60
Задача опубликована: 15.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите все целые решения уравнения: p5+p3+2=q2-q. В ответе укажите значение суммы всех q.

Задачу решили: 26
всего попыток: 36
Задача опубликована: 05.02.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.

Задачу решили: 26
всего попыток: 118
Задача опубликована: 22.02.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

На каждой ветви графика уравнения |xy|=k  взято по одной точке A, B, C и D так, что получился квадрат ABCD, со стороной k и имеющий с графиком общими точками только вершины. Найдите наибольшую площадь такого квадрата.

Задачу решили: 28
всего попыток: 40
Задача опубликована: 12.04.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим систему двух неравенств с целочисленными коэффициентами:

Ax² + Bx + C ≤ 0
Dx² + Ex + F ≤ 0

Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?

Задачу решили: 38
всего попыток: 51
Задача опубликована: 14.04.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок).

Шестиугольник и парабола

Найдите ординату точки А.

Задачу решили: 41
всего попыток: 44
Задача опубликована: 23.07.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

f(x+y)=f(x)+f(y)+xy, f(4)=10.

Найдите f(2021).

Задачу решили: 24
всего попыток: 75
Задача опубликована: 03.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Рассмотрим уравнение в целых числах:
x/(y+z) + y/(x+z) + z/(x+y) = x+y+z.
Найдите первые три наименьшие различные неотрицательные значения суммы s=x+y+z. Введите в ответе сумму этих трёх значений s.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.