img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 24
всего попыток: 75
Задача опубликована: 29.06.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: MMM (MMM MMM)

Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?

Задачу решили: 21
всего попыток: 25
Задача опубликована: 03.08.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: avilow (Николай Авилов)

В треугольнике ABC соотношения длин сторон:
|AB| : |BC| : |CA| = 13 : 17 : 19.

Пусть m - окружность, описанная около треугольника ABC, её длина равна 1440. n - окружность, вписанная в треугольнике ABC.

Определим множество W всех таких точек M на окружности m, которые обладают следующим свойством:
если провести из точки M обе касательные к окружности n, и эти касательные пересекут окружность m в новых точках M1 и M2, то отрезок M1M2 также будет касаться окружность n.

Очевидно, точки A, B и С принадлежат множеству W. Известно, что множество W можно разбивать на взаимно непересекающиеся сплошные дуги на окружности m. Чему равна их суммарная длина?

Задачу решили: 21
всего попыток: 70
Задача опубликована: 05.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева).

Пятиугольник из бумажной полосы

Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.

Задачу решили: 29
всего попыток: 43
Задача опубликована: 28.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.

Задачу решили: 38
всего попыток: 51
Задача опубликована: 14.04.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок).

Шестиугольник и парабола

Найдите ординату точки А.

Задачу решили: 26
всего попыток: 27
Задача опубликована: 03.01.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: MMM (MMM MMM)

Из одной вершины равностороннего треугольника провели прямую, которая пересекает противоположную сторону и делит треугольник на два треугольника. В каждый из них вписаны окружности, радиусы которых относятся как 2:3. Каково отношение длин отрезков(меньшей к большемй), на которые была разделена сторона равностороннего треугольника? 

Задачу решили: 18
всего попыток: 35
Задача опубликована: 18.02.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?

Задачу решили: 25
всего попыток: 54
Задача опубликована: 14.01.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: andervish (Андрей Вишневый)

В параллелограмм вписана елочка так, как показано на рисунке.

Елочка в параллелограмме

Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.  

Задачу решили: 28
всего попыток: 54
Задача опубликована: 06.02.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: user033 (Олег Сopoкин)

Четыре деревни расположены в вершинах квадрата стороной 2 км. Между ними построены дороги. В ответе укажите наименьшаую суммарную протяженность в метрах, округлив ее до ближайшего целого.

Задачу решили: 17
всего попыток: 28
Задача опубликована: 06.10.23 08:00
Прислал: Kf_GoldFish img
Источник: По мотивам задачи 2400
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32.

Треугольники в треугольнике

Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.