Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
75
Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?
Задачу решили:
21
всего попыток:
25
В треугольнике ABC соотношения длин сторон: Пусть m - окружность, описанная около треугольника ABC, её длина равна 1440. n - окружность, вписанная в треугольнике ABC. Определим множество W всех таких точек M на окружности m, которые обладают следующим свойством: Очевидно, точки A, B и С принадлежат множеству W. Известно, что множество W можно разбивать на взаимно непересекающиеся сплошные дуги на окружности m. Чему равна их суммарная длина?
Задачу решили:
21
всего попыток:
70
Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева). Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.
Задачу решили:
29
всего попыток:
43
В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.
Задачу решили:
38
всего попыток:
51
Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок). Найдите ординату точки А.
Задачу решили:
26
всего попыток:
27
Из одной вершины равностороннего треугольника провели прямую, которая пересекает противоположную сторону и делит треугольник на два треугольника. В каждый из них вписаны окружности, радиусы которых относятся как 2:3. Каково отношение длин отрезков(меньшей к большемй), на которые была разделена сторона равностороннего треугольника?
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Задачу решили:
25
всего попыток:
54
В параллелограмм вписана елочка так, как показано на рисунке. Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.
Задачу решили:
28
всего попыток:
54
Четыре деревни расположены в вершинах квадрата стороной 2 км. Между ними построены дороги. В ответе укажите наименьшаую суммарную протяженность в метрах, округлив ее до ближайшего целого.
Задачу решили:
17
всего попыток:
28
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32. Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|