Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
28
В чемпионате по шахматам участвовало 16 игроков. После его окончания каждому участнику выдали отчет на 16 страницах. На первой указано имя участника, на второй - он и те, у кого он выиграл, на третьей - все люди из второго списка и те, у кого они выиграли, и т.д. на последней, 16-й, все участники со страницы 15 и те, у кого они выиграли. Известно, что для любого участника на его последнюю страницу попал человек, которого не было в его одиннадцатом списке. Какое максимальное количество партий чемпионата могло быть сыграно вничью?
Задачу решили:
36
всего попыток:
65
Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?
Задачу решили:
34
всего попыток:
72
Ювелир сделал незамкнутую цепочку из 120 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Задачу решили:
32
всего попыток:
33
В каждую клетку квадратной таблицы размера (22016−1)×(22016−1) ставится одно из чисел +1 или −1. Расстановку чисел назовем удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
Задачу решили:
24
всего попыток:
34
Имеются 4 внешне неотличимые монеты весом 1, 2, 3 и 4 грамма. За какое минимальное количество взвешиваний на чашечных весах без гирь можно определить вес каждой монетки?
Задачу решили:
25
всего попыток:
83
У трех студентов-математиков на шляпах написаны натуральные числа, студенты не знают что написано на своих шляпах, но видят числа на шляпах других. При этом они знают, что одно число равно сумме двух других. Их задача - определить свои числа. Дальше прошел такой диалог. 1: «Я не знаю свое число». Какое число у первого?
Задачу решили:
44
всего попыток:
51
11 дат года записаны в случайном порядке без указания месяцев: 4, 30, 2, 3, 5, 3, 1, 31, 4, 3, 1. Известно, что каждые две соседние (по календарю) даты отстоят друг от друга ровно на 30 дней (как, например, 1 и 31 января). Какое число соответствует августу?
Задачу решили:
35
всего попыток:
88
Студенты-математики в темноте одели шляпы разного цвет, затем включили свет и они увидели чужие шляпы, но не свои. Один из них крикнул: «Если вы видите как минимум 5 красных шляп и как минимум 5 белых, поднимите руку!» Ровно 10 человек подняли руки. Какое минимальное количество студентов могло быть?
Задачу решили:
19
всего попыток:
45
Одна из 11 монеток обладает странным свойстовом - она может быть либо настоящей, либо фальшивой (более легкой), настоящие монетки весят одинаково. При этом после каждого взвешивания она меняет свое состояние на другое. В каком состоянии она находится в данный момент неизвестно. За сколько взвешиваний на чашечных весах ее можно определить?
Задачу решили:
27
всего попыток:
158
Вовочка называет ненулевую цифру, а Маша вставляет ее вместо одной из звёздочек в выражение **** - **** (разность двух четырехзначных чисел). Цель Вовочки - получить после восьми ходов максимальное значение выражения, а цель Маши - минимальное. Каким будет значение выражения при идеальной игре обоих?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|