Лента событий:
Kf_GoldFish
добавил
комментарий к
решению
задачи
"Ломаные маршруты - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
71
всего попыток:
86
Даны два многочлена, которые удовлетворяют условиям: a5 + b5 +c5 + 5(a4(b + c) + b4(a + c) +c4(a + b)) = -1 a3(b2 + c2 ) + b3(a2 + c2) + c3(a2 + b2) + 2(a3bc + b3ac +c3ab ) + 3abc(ab + bc + ac) = 1/10 Чему равно a + b + c?
Задачу решили:
45
всего попыток:
326
Вдоль коридора тюрьмы 13 камер, вначале пустых. Раз в день можно сделать такую операцию: либо посадить двоих в самую левую камеру, либо переселить двоих из одной камеры в две соседних (если камера крайняя, то одного выпускают совсем). За какое наименьшее число дней удастся посадить кого-нибудь в самую правую камеру?
Задачу решили:
36
всего попыток:
142
Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.
Задачу решили:
87
всего попыток:
211
Сколько целых пар x и y удовлетворяет системе неравенств
Задачу решили:
31
всего попыток:
48
Коэффициенты an приведённого многочлена P(x)=x2012+a1x2011+...+a2012 удовлетворяют условию ||an|-1|<1/2012 при n=1,...,2012. Найдите максимальное количество отрицательных коэффициентов многочлена P(x) при условии, что действительных корней у него нет.
Задачу решили:
52
всего попыток:
106
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
15
всего попыток:
727
Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.
Задачу решили:
119
всего попыток:
136
Найдите максимально возможное целое значение отношения (x+y)^2/(xy), где x и y — положительные целые числа.
Задачу решили:
66
всего попыток:
88
Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).
Задачу решили:
119
всего попыток:
184
Даны две концентрические окружности. Хорда большей из них является касательной к меньшей окружности и имеет длину 100. Чему равна площадь кольца между двумя окружностями. Ответ округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|