Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
52
всего попыток:
87
Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.
Задачу решили:
33
всего попыток:
75
У менеджера 10 поручений. Выполнять их надо по одному в день, но в определенном порядке. Поручения занумерованы числами от 1 до 10. На поручения с 1 по 5 наложены ограничения. В первый и шестой день нельзя выполнять первое поручение, во второй и седьмой день нельзя выполнять второе поручение и т. д. в пятый и десятый день нельзя выполнять пятое поручение. 5 поручений с 6 -го по 10 можно выполнять в любой из десяти дней. Hайти количество способов выполнить поручения.
Задачу решили:
64
всего попыток:
83
Найти сумму всех натуральных п таких, что справедливо следующее равенство:
Задачу решили:
62
всего попыток:
108
Для действительных чисел x, y выполнено условие |x + y + 1| + |x + 1| + |y + 3| = 3. Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2. Найдите M + 2m.
Задачу решили:
11
всего попыток:
426
Сколько существует различных вписанных четырёхугольников ABCD, для которых AB=DA+BC=1, а величины углов DAB и ABC в градусах целочисленные?
Задачу решили:
68
всего попыток:
115
Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.
Задачу решили:
55
всего попыток:
65
Любое простое число вида p=4k+1 можно единственным способом представить в виде: p = a² + b², где a<b - целые положительные числа. Например: 165100009 = 5520² + 11603². Квадраты таких простых чисел также можно представить единственным способом в виде: p² = x² + y², где x<y - целые положительные числа. Найдите два целых положительных числа x<y, для которых выполняется: 165100009² = x² + y². В качестве ответа введите оба числа подряд без пробелов: x (меньший), и сразу за ним y (больший).
Задачу решили:
38
всего попыток:
58
В очереди стояло 20 человек. Касса сломалась, и все перешли в соседнюю только что открывшуюся кассу. Сколькими способами они могут выстроиться в новую очередь так, чтобы человек, стоявший на месте с номером k изменил свой номер в очереди не более чем на k?
Задачу решили:
54
всего попыток:
74
Известно, что действительные числа a и b удовлетворяют уравнению
Задачу решили:
27
всего попыток:
139
Рассмотрим простое число p и трёхчлен: 2x² + 11x + 1. Обозначим: f(p) - количество целых неотрицательных x, не превосходящих p, при которых трёхчлен делится на p. g(p) - сумма всех этих x для данного p. Найдите сумму g(p) по всем таким p, для которых f(p)=1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|