img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Угол DAM" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 28
всего попыток: 94
Задача опубликована: 26.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите максимальное количество плоскостей, каждая из которых равноудалена от некоторых четырёх точек из заданных 2014-ти точек пространства, расположенных в общем положении.

Задачу решили: 30
всего попыток: 44
Задача опубликована: 28.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В остроугольном треугольнике ABC высоты BD и CE пересекаются в точке H, точка M --- середина AH. Через точки A и H провели окружность, центр O которой лежит вне треугольника ABC. Окружность пересекается с прямой AC$ в точке P. Известно, что углы MED и APO равны, |AB| = 200, |AD| = 40, |AP| = 96√6. Найдите длину отрезка OP.

Задачу решили: 42
всего попыток: 74
Задача опубликована: 03.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из букв A, B, C, D составляют слова длины 8, так чтобы к каждой букве А справа примыкала буква B, а к каждой букве B слева примыкала буква A, например DABABDAB и DDCCDCCD. Cколько различных слов можно составить?

Задачу решили: 35
всего попыток: 91
Задача опубликована: 05.03.14 14:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: sacred_shaved_... (Никита Гладков)

Найдите наименьшее и наибольшее k, такое что существуют состоящие из k различных целых чисел множества A и B со следующим свойством: всевозможные суммы пар элементов, один из которых берется из множества A, а второй из множества B, образуют множество {0,1,2, ..., 100}. В ответе укажите сумму найденных значений.

Задачу решили: 48
всего попыток: 129
Задача опубликована: 07.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

n = 3 × 77. Найдите наибольший общий делитель 7n - 1 и 7n + 4949.

Задачу решили: 55
всего попыток: 75
Задача опубликована: 10.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точки M и N делят сторону BC треугольника ABC на три равные части (|BM| = |MN| = |NC|). Точка F — середина отрезка AN. Прямая, проходящая через F и параллельная AC, пересекает AB в точке D, а AM — в точке E. Найдите отношение |EF|/|ED|.

Задачу решили: 28
всего попыток: 210
Задача опубликована: 12.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: marzelik

Есть 1000 белых кубиков со стороной 1. Пушистая девочка Оля хочет сложить из них всех какой-нибудь параллелепипед, белый снаружи. Какое наименьшее число граней должен испачкать проказник Федя, чтобы ей помешать?

Задачу решили: 38
всего попыток: 41
Задача опубликована: 14.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

В остроугольном треугольнике ABC на стороне BC как на диаметре построили окружность O. Через точку P на стороне AB перпендикулярно AB провели прямую, пересекающую AC в точке Q, причем |AP| = 10 и площадь треугольника APQ в 4 раза меньше площади треугольника ABC. Найдите длину отрезка касательной AT, проведенной из точки A к окружности O.

Задачу решили: 65
всего попыток: 77
Задача опубликована: 17.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Последовательность x1, x2, x3,…, задана формулой xn = 2n(n+1). Какое наибольшее количество подряд идущих её членов могут быть точными квадратами?

Задачу решили: 46
всего попыток: 77
Задача опубликована: 19.03.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дан треугольник ABC.

Радиус окружности, касающей стороны AB и продолжений сторон AC и BC равен 78.

Радиус окружности, касающей стороны AC и продолжений сторон AB и BC равен 91.

Радиус окружности, касающей стороны BC и продолжений сторон AB и AC равен 102.

Чему равна площадь треугольника ABC?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.