img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 45
всего попыток: 76
Задача опубликована: 20.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Рассмотрим одноклеточное существо змейку – фигуру, первоначально содержащую один квадрат и растущую в плоскости за счет прибавления квадратных клеток того же размера к какой-нибудь его стороне. Стороны этой фигуры не должны выходить за пределы квадрата 1999 на 1999. Найти максимальное число клеток, которое может иметь связная фигура (в комбинаторике такая фигура называется полимино). Связность заключается в том, что в ней нет дыр. Кроме того, никакая точка фигуры не может одновременно принадлежать четырем клеткам, а каждая клетка не может иметь только одну точку общую с остальными клетками. 

Для иллюстрации приведен рисунок, показывающий процесс роста фигуры и запрещенные позиции, которые не может содержать фигура в процессе своего роста.

       ПРОЦЕСС РОСТА ФИГУРЫ                                                          

222.png

       ЗАПРЕЩЕННЫЕ ПОЗИЦИИ

    333.png                                                                           

             a)           b)         c)

Задачу решили: 40
всего попыток: 261
Задача опубликована: 24.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Плоский граф содержит 122 вершины, все его грани шестиугольники. Граф содержит замкнутый путь, идущий по ребрам, проходящий через каждую вершину только один раз. Такой граф называется гамильтоновым. Найти число граней,  которые имеет данный граф.

Задачу решили: 27
всего попыток: 100
Задача опубликована: 10.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество инъективных функций f \colon \{1,2,\ldots, 7\} \to \{1,2,\ldots,9\}, обладающих следующим свойством:

f(i) \ne f(j) + 1 для всех 1 \le i < j \le 7.

Задачу решили: 40
всего попыток: 79
Задача опубликована: 31.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.

Задачу решили: 56
всего попыток: 277
Задача опубликована: 05.12.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.

Задачу решили: 40
всего попыток: 62
Задача опубликована: 02.01.13 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Пусть задана строка состоящая из 2m неотрицательных целых чисел, удовлетворяющих условию: 

1) числа в строке не могут возрастать;

2) каждое число не превосходит m;

3) нулей может быть любое количество, не превосходящее 2m, остальные числа могут иметь только одну пару.

Пример для m=4:
(4,3,3,1,0,0,0,0), (4,3,2,1,1,0,0,0)

Найти количество таких строк при m=10. 

Задачу решили: 36
всего попыток: 266
Задача опубликована: 28.01.13 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В стране 1000 городов, некоторые пары городов соединены дорогами. Оказалось, что один из концов любой дороги является городом, из которого выходит не более 10 дорог. Какое наибольшее количество дорог может быть в этой стране?

Задачу решили: 32
всего попыток: 250
Задача опубликована: 20.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?

Задачу решили: 40
всего попыток: 81
Задача опубликована: 11.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2007
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Вершины графа G можно единственным образом разбить на 5 групп так, что никакие две вершины из одной группы не смежны. Количество вершин в графе - 2012. Найдите минимальное число ребер в этом графе.

Задачу решили: 43
всего попыток: 84
Задача опубликована: 18.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В одной кучке лежит n камней, а в другой – k камней. Каждую минуту автомат выбирает кучку, в которой четное число камней, и половину имеющихся в ней камней перекладывает в другую кучку (если в обеих кучках четное число камней, то автомат выбирает кучку случайным образом). Если в обеих кучках число камней оказалось нечетным, автомат прекращает работу. Сколько существует упорядоченных пар натуральных чисел (n, k), не превосходящих 1000, для которых автомат через конечное время обязательно остановится?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.