img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 76
всего попыток: 213
Задача опубликована: 16.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

В прямоугольном треугольнике точка P лежит на катете BC, а точка Q — на гипотенузе AB. Найдите наименьшую возможную длину незамкнутой ломаной APQ, если известно, что AC=700, BC=2400.

Задачу решили: 69
всего попыток: 128
Задача опубликована: 23.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

В треугольнике ABC с площадью 72 один из углов равен 60°, а радиус описанной окружности в 3 раза больше радиуса вписанной, которая касается сторон треугольника в точках K, L и M. Найдите площадь треугольника KLM.

Задачу решили: 100
всего попыток: 214
Задача опубликована: 09.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: katalama (Иван Максин)

На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?

Задачу решили: 90
всего попыток: 436
Задача опубликована: 23.07.10 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 78
всего попыток: 135
Задача опубликована: 27.09.10 08:00
Прислал: Rep img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

Стороны AB, BC и CA треугольника ABC равны 684, 780 и 816 соответственно, а высоты AM и BN пересекаются в точке H. Найдите радиус окружности, проходящей через точки M, N и середину отрезка CH.

Задачу решили: 41
всего попыток: 50
Задача опубликована: 08.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.

Задачу решили: 80
всего попыток: 201
Задача опубликована: 14.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Какое наибольшее количество королей можно расставить на шахматной доске так, чтобы ровно половина из них не угрожала никому из остальных?

Задачу решили: 145
всего попыток: 168
Задача опубликована: 17.11.10 12:00
Прислала: Marishka24 img
Источник: Челябинский турнир матбоёв
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На гипотенузе AB прямоугольного треугольника ABC взяты две точки M и N так, что AC=AM, BC=BN. Сколько градусов составляет величина угла MCN?

Задачу решили: 40
всего попыток: 236
Задача опубликована: 19.11.10 12:00
Прислал: bbny img
Источник: "Квант"
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Father

Квадрат N×N (N≥1000 — натуральное число) разбит на k квадратов, наименьший из которых имеет сторону 1. Найдите минимально возможное k.

 

+ 17
+ЗАДАЧА 463. Квадрат без квадратов (С.Б.Гашков, А.А.Григорян)
  
Задачу решили: 50
всего попыток: 159
Задача опубликована: 22.11.10 08:00
Прислал: Busy_Beaver img
Источник: Всесоюзная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

В квадрате размером 13×13 клеток отмечены центры k клеток. При этом никакие четыре отмеченные точки не являются вершинами прямоугольника со сторонами, параллельными сторонам квадрата. При каком наибольшем k это возможно?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.