Лента событий:
makar243 решил задачу "Угол DAM" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
94
Определите количество различных значений в конечной последовательности чисел [12/2015], [22/2015], [32/2015], ..., [20152/2015]
Задачу решили:
46
всего попыток:
66
В прямоугольник ABCD (|AB|=36, |BC|=60) вписан прямоугольник KLMN (точки K и L расположены соответственно на сторонах AB и BC), при это |BL|<|LC|. Найти максимально возможное значение |BL|.
Задачу решили:
46
всего попыток:
63
Для целых положительных чисел n определена функция f(n)=n2+n+1. Найдите наибольшее n такое, что 2015*f(12)*f(22)*...*f(n2)≥(f(1)*f(2)*...f(n))2.
Задачу решили:
40
всего попыток:
262
Стрелочные часы с тремя стрелками - часовой, минутной и секундной имеют плавный ход, то есть стрелки движутся плавно, без скачков по делениям. Определите, сколько существует моментов времени (чч:мм:сс:мкс и т.д.) углы между часовой и минутной, минутной и секундной и секундной и часовой составляют ровно 120 градусов.
Задачу решили:
39
всего попыток:
88
Найти сумму всех Fn/2015n для всех натуральных n. F0=0, F1=1, Fn=Fn-1+Fn-2.
Задачу решили:
58
всего попыток:
127
В окружность вписан равносторонний треугольник А1В1С1 с площадью S1. У второго равностороннего треугольника А2В2С2 с площадью S2 вершины А2 и С2 также лежат на окружности, а В2 – середина отрезка А1С1 (см. рисунок). Учитывая, что А1В1||А2В2, найдите S1/S2. В ответе укажите значение [10•S1/S2].
Задачу решили:
68
всего попыток:
82
[n*lg2]+[n*lg5]=2010. Найти n. ([x] - целая часть числа x.)
Задачу решили:
51
всего попыток:
64
Найдите [102017/S], где S=1+11+111+...+11...1 (2014 единиц). [x] - целая часть числа x.
Задачу решили:
8
всего попыток:
185
При некоторых положениях трёх стрелок часов (будем считать, что все стрелки двигаются плавно), одна из стрелок делит попалам угол между двумя другими стрелками. Сколько существует таких положений? [Угол α между двумя другими стрелками будем считать только: 0°<α<180°, и стрелка-биссектриса делит его на два одинаковых угла 0°<α/2<90°] Пример искомого положения можно наблюдать ровно в 1:12:00.
Задачу решили:
36
всего попыток:
75
Три вершины треугольника с длинами сторон a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20. Найдите минимальное возможное значение произведения a•b•c.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|