img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 решил задачу "Угол DAM" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 42
Задача опубликована: 18.09.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В треугольнике ABC |AB|=|AC|, точки D и E выбраны на сторонах AB и AC соответственно так, что |AD|=|DB|, |AE|=|EC|. Точка F расположена на прямой DE так, что треугольники ABC и BFA конгруэнтны. Найдите (|AB|/|BC|)2.

Задачу решили: 54
всего попыток: 63
Задача опубликована: 21.09.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Marutand

Действительные числа x и y таковы, что x4y5+y4x5=810 и x3y6+y3x6=945. Найдите 2x3+x3y3+2y3.

Задачу решили: 65
всего попыток: 108
Задача опубликована: 25.09.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найти сумму всех целых решений уравнения (x2-3x+1)x+1=1.

Задачу решили: 43
всего попыток: 55
Задача опубликована: 07.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Пусть многочлен P(x)=x3+x2+c, c - действительное число. Пусть I - конечный интервал такой, что P(x) имеет более, чем один действительный корень для всех c принадлежащих I. Найдите длину этого интервала.

Задачу решили: 45
всего попыток: 82
Задача опубликована: 09.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите сумму всех целых значений x и y, удовлетворяющих уравнению x3+(x+1)3+...+(x+7)3=y3

Задачу решили: 35
всего попыток: 64
Задача опубликована: 12.10.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: snape

Длины сторон треугольника ABC равны:

|AB| = 43

|AC| = 45

|BC| = 4

Точка O - центр окружности описанной около треугоьника ABC.

Точка Q - центр окружности описанной около треугоьника, вершины которого - середины сторон треугольника ABC.

D и E - точки на прямой BC.

Отрезки OD и QE перпендикулярны прямой BC.

Найдите длину отрезка DE.

Задачу решили: 37
всего попыток: 71
Задача опубликована: 21.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB  соответственно в точках D и E. Разность углов <ADE - <AED равна 60 градусов. Найти угол ACB в градусах.

Задачу решили: 37
всего попыток: 58
Задача опубликована: 28.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть P(x)=x2016±x2015±...±x±1 многочлен с коэффициентами ±1. Известно, что у него нет действительных корней. Какое максимальное количество коэффициентов -1 у него может быть?

Задачу решили: 37
всего попыток: 101
Задача опубликована: 09.11.15 08:00
Прислал: TALMON img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n.

Найдите сумму всех натуральных чисел n, для которых φ(n)=128.

Задачу решили: 41
всего попыток: 86
Задача опубликована: 16.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть a, b, c, d - натуральные числа. Найти минимум выражения
[(a+b+c)/d] + [(b+c+d)/a] + [(c+d+a)/b] + [(d+a+b)/c], где [x] - целая часть x. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.