Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
20
Для произвольного треугольника ABC есть внутренняя точка K, являющаяся общей вершиной трех равных квадратов, по две остальные вершины которых лежат на сторонах треугольника. Если описать окружность с центром в этой точке и радиусом, равным стороне квадрата, - она пересечёт стороны треугольника как раз в этих шести вершинах. Найдите квадрат радиуса этой окружности для треугольника со сторонами (7,15,20).
Задачу решили:
23
всего попыток:
32
На рисунке изображена 11-конечная звезда с концами в 11-и точках, определяющих на параболе y=x² десять дуг одинаковой длины, от точки (-2, 4) до точки (2, 4). Чему равна сумма углов концов звезды (в градусах)?
Задачу решили:
28
всего попыток:
32
В прямоугольник с площадью 5 вписана окружность, касающаяся трех сторон. Хорда, образованная диагональю при пересечении окружности,равна 1. Найти отношение ширины к длине прямоугольника.
Задачу решили:
21
всего попыток:
32
Длина большего основания AD равнобокой трапеции ABCD с целочисленными значениями наибольшей площади и сторон равна 11. На продолжении прямой АВ отмечена точка В1 (|АВ|=|ВВ1|),на продолжении прямой ВС отмечена точка С1 (|ВС|=|СС1|), на продолжении прямой СD отмечена точка D1 (|CD|=|DD1|),на продолжении прямой DA отмечена точка А1 (|DA|=|AA1|). Найти площадь четырехугольника А1В1С1D1.
Задачу решили:
19
всего попыток:
37
У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг. Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?
Задачу решили:
16
всего попыток:
26
На сторонах АВ и ВС треугольника АВС отмечены точки D и E соответственно так, что отрезки АЕ и CD пересекаются в точке F, делят треугольник на три треугольника CEF, ADF, ACF с целочисленными площадями, образующими арифметическую прогрессию, и четырехугольник BEFD с целочисленной площадью. Найти наименьшую площадь треугольника АВС.
Задачу решили:
23
всего попыток:
30
В правильной треугольной призме ABCA’B’C’ на рёбрах AA’, BB’, CC’ отмечены соответственно точки A’’, B’’, C’’ так, что: Найдите соотношение объёма многогранника ABCA’’B’’C’’ к объёму призмы.
Задачу решили:
29
всего попыток:
35
Найти наибольший периметр треугольника с таким свойством: три стороны - последовательные натуральные числа, один из углов в два раза больше другого из двух других. Найти наибольший периметр треугольника с таким свойством.
Задачу решили:
36
всего попыток:
52
log4(x+2y)+log4(x−2y)=1, найти мининум |x|-|y| для целых x и y.
Задачу решили:
28
всего попыток:
30
Для положительных x, y и z таких, что x2+y2+z2+2xyz=1, найдите максимум xy+yz+zx-2xyz.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|