Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
30
всего попыток:
46
Сколько имеется способов, чтобы числа 20, 21, 22, . . . , 22017 можно было разбить на два непустых множества A и B так, что уравнение x2−S(A)x+S(B) = 0, где S(M)—сумма чисел множества M, имело целый корень?
Задачу решили:
44
всего попыток:
52
Найдите количество троек натуральных чисел x, y, z таких, что (x+1)y+1+1=(x+2)z+1.
Задачу решили:
62
всего попыток:
69
Решить уравнение и найти сумму произведений пар решений 9x2+9y2-300x-108y+2824=0.
Задачу решили:
47
всего попыток:
62
На стороне AB треугольника ABC находится точка D. На стороне BC того же треугольника находится точка E. Продолжение отрезка DE пересекается с продолжением стороны AC в точке F (точка C находися между точками A и F). Дано: |AB| = 35, |BC| = 30, |CA| = 30, |BD| = 7, |BE| = 9. Найдите длину отрезка CF.
Задачу решили:
51
всего попыток:
60
Последовательность (an) задана следующим правилом: a1=1, Найти минимальное n>1, когда an=1.
Задачу решили:
21
всего попыток:
92
Известно, что для положительных действительных чисел x1+x2+...+xn=n. Найти наибольшее n такое, что всегда x12+x22+...+xn2 ≤ 1/x12+1/x22+...+1/xn2.
Задачу решили:
28
всего попыток:
29
Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3.
Задачу решили:
46
всего попыток:
92
Какое число находится на третьем месте в упорядоченном множестве M таких натуральных чисел, делящихся на 225, в записи которых использованы только цифры 0 и 8?
Задачу решили:
15
всего попыток:
17
Имеется таблица 1000 х 1000, все клетки которой изначально пусты. Два игрока-терминатора соревнуются в следующей игре. За один ход можно записать в любую незанятую клетку таблицы любое натуральное число от 1 до 106, если такого числа еще нет в таблице. Игроки записывают числа, пока не заполнят всю таблицу. Пусть А количество строк, в каждой из которых сумма чисел делится нацело на 106, а В – количество столбцов, в каждом из которых сумма чисел делится нацело на 106. Первый игрок выигрывает, если А > В, иначе выигрывает второй игрок. Кто из игроков сможет выиграть независимо от игры соперника? (Укажите номер победителя: 1 или 2.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|