img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 28
всего попыток: 210
Задача опубликована: 12.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: marzelik

Есть 1000 белых кубиков со стороной 1. Пушистая девочка Оля хочет сложить из них всех какой-нибудь параллелепипед, белый снаружи. Какое наименьшее число граней должен испачкать проказник Федя, чтобы ей помешать?

Задачу решили: 36
всего попыток: 112
Задача опубликована: 26.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Из 20 сидящих за круглым столом людей выбирают 8. Найдите количество способов сделать это так, чтобы никакие двое выбранных не сидели рядом.

Задачу решили: 51
всего попыток: 82
Задача опубликована: 31.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сколькими различными способами можно расставить в таблице 3x3 числа 1, 2, …, 9 таким образом, чтобы все суммы чисел по строкам и столбцам были нечётными?

Задачу решили: 32
всего попыток: 152
Задача опубликована: 07.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество всевозможных пар подмножеств множества A = {1,2, ..., 6}, для которых выполняется следующее условие: объединение этой пары дает множество A, а пересечение содержит не менее двух элементов.

Подмножества в паре различны, порядок не учитывается.

Задачу решили: 34
всего попыток: 62
Задача опубликована: 11.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Сколькими способами можно провести в выпуклом 7-угольнике A1A2...A7 четыре непересекающихся диагонали так, чтобы 7-угольник разбивался ими на 5 треугольников, каждый из которых имеет с 7-угольником хотя бы одну общую сторону?

Задачу решили: 60
всего попыток: 114
Задача опубликована: 16.04.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько существует пятизначных чисел-палиндромов, делящихся на 11?

Задачу решили: 27
всего попыток: 218
Задача опубликована: 25.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество упорядоченных наборов целых чисел (a1, a2, ..., a8), удовлетворяющих следующим условиям:
(i) 0 < a1 < a3 < a5 < a7 < 9
(ii) 0 < a2 < a4 < a6 < a8 < 9
(iii) a2i - 1 < a2i (i = 1, 2, 3, 4)

Задачу решили: 54
всего попыток: 104
Задача опубликована: 02.06.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Среди пятизначных чисел с цифрами от 1 до 4 найдите количество тех, у которых никакие две соседние цифры не отличаются ровно на единицу.

Задачу решили: 40
всего попыток: 155
Задача опубликована: 18.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?

Задачу решили: 57
всего попыток: 64
Задача опубликована: 02.03.16 08:00
Прислал: admin img
Вес: 3
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: petrakomplekt (Жирайр Казарян)

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды посчитали количество карт между ней и такой же картой второй колоды (т. е. сколько карт между семерками червей, между дамами пик, и т. д.). Чему равна сумма 36 полученных чисел?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.