Лента событий:
Kf_GoldFish
добавил
комментарий к
решению
задачи
"Ломаные маршруты - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
42
Пусть P(n) - произведение цифр натурального числа n. Найдите сумму всех n таких, что n2-17n+56=P(n).
Задачу решили:
34
всего попыток:
63
Расположим в порядке возрастания все стозначные числа, у которых сумма цифр равна их произведению. Какое число окажется на 13-м месте? В качестве ответа введите последние четыре младшие цифры найденного числа.
Задачу решили:
41
всего попыток:
43
1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.
Задачу решили:
15
всего попыток:
16
Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).
Задачу решили:
44
всего попыток:
56
Прямоугольный треугольник с катетами 21 и 28 разделен биссекрисой прямого угла на два треугольника. Найти расстояние между точками пересечения высот этих треугольников.
Задачу решили:
42
всего попыток:
52
В прямоугольном треугольнике АВС (угол С-прямой) проведены медиана АА1 и высота СС1. Точка пересечения их - M. Найти угол А в градусах, если |МС1|:|МС|=3:4.
Задачу решили:
48
всего попыток:
54
Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции.
Задачу решили:
29
всего попыток:
34
Множество состоит из различных простых чисел таких, что сумма любых трех также является простым. Какое наибольшее количество чисел может содержать такое множество?
Задачу решили:
32
всего попыток:
34
Натуральное число n не делится на 3. Пусть A(n) - это сумма делителей числа n, которые при делении на 3 дают в остатке 1, и B(n) - это сумма делителей, которые при делении на 3 дают в остатке 2. Найдите сумму всех таких n, для которых |A(n)-B(n)|2 < n.
Задачу решили:
53
всего попыток:
72
Ёлочка, изображенная на рисунке, получается из квадрата в результате бесконечного процесса следующим образом: квадрат по диагонали разрезается на два треугольника, один из них ложится в основание ёлочки, второй разрезается на два равных треугольника, один из них идет на построение ёлочки, второй разрезается на два равных треугольника, и так строится постоянно растущая ёлочка. Найдите величину угла АЕС. Ответ выразите в градусах, округлив до ближайшего целого числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|