img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Ломаные маршруты - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 42
Задача опубликована: 18.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть P(n) - произведение цифр натурального числа n. Найдите сумму всех n таких, что n2-17n+56=P(n).

Задачу решили: 34
всего попыток: 63
Задача опубликована: 28.10.19 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Расположим в порядке возрастания все стозначные числа, у которых сумма цифр равна их произведению. Какое число окажется на 13-м месте? В качестве ответа введите последние четыре младшие цифры найденного числа.

Задачу решили: 41
всего попыток: 43
Задача опубликована: 30.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.

Задачу решили: 15
всего попыток: 16
Задача опубликована: 01.11.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).

Задачу решили: 44
всего попыток: 56
Задача опубликована: 13.11.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Прямоугольный треугольник с катетами 21 и 28 разделен биссекрисой прямого угла на два треугольника. Найти расстояние между точками пересечения высот этих треугольников.

Задачу решили: 42
всего попыток: 52
Задача опубликована: 18.11.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В прямоугольном треугольнике АВС  (угол С-прямой) проведены медиана АА1 и высота СС1. Точка пересечения их - M. Найти угол А в градусах, если |МС1|:|МС|=3:4.

Задачу решили: 48
всего попыток: 54
Задача опубликована: 25.11.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции.

Задачу решили: 29
всего попыток: 34
Задача опубликована: 04.12.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Множество состоит из различных простых чисел таких, что сумма любых трех также является простым. Какое наибольшее количество чисел может содержать такое множество?

Задачу решили: 32
всего попыток: 34
Задача опубликована: 18.12.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число n не делится на 3. Пусть A(n) - это сумма делителей числа n, которые при делении на 3 дают в остатке 1, и B(n) - это сумма делителей, которые при делении на 3 дают в остатке 2. Найдите сумму всех таких n, для которых |A(n)-B(n)|2 < n.

Задачу решили: 53
всего попыток: 72
Задача опубликована: 23.12.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Marutand

Елочки

Ёлочка, изображенная на рисунке, получается из квадрата в результате бесконечного процесса следующим образом: квадрат по диагонали разрезается на два треугольника, один из них ложится в основание ёлочки, второй разрезается на два равных треугольника, один из них идет на построение ёлочки, второй разрезается на два равных треугольника, и так строится постоянно растущая ёлочка. Найдите величину угла АЕС. Ответ выразите в градусах, округлив до ближайшего целого числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.