Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
65
Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты. Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского?
Задачу решили:
15
всего попыток:
58
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Задачу решили:
19
всего попыток:
48
Три попарно неравных квадрата площади S1, S2 и S3 имеют общую вершину (и только её), при этом вершины всех квадратов расположены в узлах квадратной решетки 1х1. Ближайшие вершины соседних квадратов соединены отрезками, на которых построены ещё три квадрата, площадь каждого из них равна 10 (смотрите рисунок). Найдите наименьшее значение суммы S1+S2+S3 и укажите его в ответе.
Задачу решили:
16
всего попыток:
33
Куб 3х3х3 разбит на единичные кубики, все их вершины отмечены точками. Найдите число всех правильных треугольников, вершинами которых являются отмеченные точки. Три из них изображены на рисунке.
Задачу решили:
23
всего попыток:
32
В квадратной таблице nxn проведена несамопересекающая ломаная, все звенья которой лежат на внутренних перегородках между клетками 1х1. Ломаная делит таблицу на две части, клетки одной части закращена черным. При этом оказалось, что в таблице число бело-белых соседних клеток равно числу бело-черных соседних клеток и равно числу черно-черных соседних клеток. Найдите длину ломаной, если известно, что её длина в 66 раз больше стороны n данной таблицы. Например, в таблице 3х3 проведена ломаная АВС длиной 4. Здесь каждого типа соседних клеток по 4.
Задачу решили:
22
всего попыток:
43
Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.
Задачу решили:
19
всего попыток:
21
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. Для каких простых чисел n начиная с 2 и не превосходящих 1000, число полученных частей в треугольнике является квадратным? В ответе укажите сумму всех таких n. На рисунке приведен равносторонний треугольник со стороной 6, в который вписаны 5 меньших равносторонних треугольников.
Задачу решили:
19
всего попыток:
23
Рассмотрим бесконечную клетчатую плоскость, по линиям сетки которой нарисована спираль шириной в одну клетку, закручивающаяся по часовой стрелке (см рис.). Имеется игральный кубик с числами 1, 2, 3, 4, 5 и 6 (обозначены точками), в котором сумма очков на противоположных гранях равна 7. Размер грани кубика совпадает с размером клетки плоскости. В начальную клетку спирали поставлен игральный кубик так, что на его верхней грани расположена 1, на передней — 4, на правой — 5. Кубик, перекатываясь через ребро, попадает в следующую клетку по спирали, и так далее, двигаясь по клеткам нарисованной спирали. В каждую клетку спирали вписывается число, расположенное на верхней грани игрального кубика, прокатившегося по ней, и таким образом, задается последовательность: 1, 2, 3, 1, 4, 2, …, в которой a9=4. Найдите пятизначное число, у которого число единиц равно a1, число десятков - a10, число сотен – a100, число тысяч - a1000, число десятков тысяч - a10000.
Задачу решили:
10
всего попыток:
21
В выпуклом четырёхугольнике Q два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. Обозначим: m – длина стороны квадрата, равновеликого четырёхугольнику Q. Для каждой точки M на периметре Q определим: f(M) – количество таких точек P на периметре Q, что |MP|=m. Например, для точки M, изображённой на рисунке: есть ровно две точки P1 и P2, расстояние которых до M равно m. Следовательно, для этой точки M имеет место f(M)=2. Для каждого целого числа k определим функцию g(k) таким образом: Найдите сумму k*g(k) по всем k.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|