Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
41
Пусть функция f(x) не равная тождественно нулю удовлетворяет условию:
Задачу решили:
19
всего попыток:
41
Рассмотрим число n=1096375199328173. Рассмотрим все натуральные числа от 1 до n-1 включительно. Рассмотрим остатки от деления квадратов этих чисел на n. Сколько всего получится различных остатков?
Задачу решили:
28
всего попыток:
57
Рассмотрим число n=106. Найдите сумму:
Задачу решили:
23
всего попыток:
76
С вершины небольшой горы к ее подножью проложена железная дорога с боковым тупиком, вмещающим 10 вагонов. Все возможные направления движения показаны на картинке стрелками. На вершине горы находятся 10 вагонов с номерами от 1 до 10, но их порядок неизвестен. Работа машиниста Вовы - свозить по одному вагоны так, чтобы внизу они оказались в обычном порядке: 1, 2, ..., 10. Для сортировки можно пользоваться тупиком. На картинке показаны два случая, когда всего 5 вагонов - в одном варианте Вова может выполнить задание, в другом - нет. Найдите вероятность того, что Вова не сможет выполнить задание (для 10 вагонов).
Задачу решили:
53
всего попыток:
90
Известно, что . Найти .
Задачу решили:
62
всего попыток:
67
Найти сумму всех натуральных чисел n таких, что сумма цифр числа 5n равна 2n.
Задачу решили:
39
всего попыток:
68
На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.
Задачу решили:
53
всего попыток:
116
Дана функция f(x) = |4 − 4|x||− 2. Сколько решений имеет уравнение f(f(x)) = x?
Задачу решили:
28
всего попыток:
51
Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.
Задачу решили:
38
всего попыток:
103
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|