Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
68
На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.
Задачу решили:
44
всего попыток:
47
Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке. Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.
Задачу решили:
20
всего попыток:
100
Концы ломаной из двух звеньев совпадают с серединами противоположных сторон правильного шестиугольника со стороной 1. Это первый целочисленный шестиугольник. Концы ломаной из трёх звеньев совпадают с серединами противоположных сторон правильного шестиугольника со стороной 2. Это второй целочисленный шестиугольник (смотрите рисунок). Сколько звеньев у ломаной, соединяющей середины противоположных сторон шестого по размерам правильного целочисленного шестиугольника? Ломаная строится как змейка: первое звено равно 1, каждое последующее на 1 больше предыдущего; угол межу соседними звеньями равен Pi/3.
Задачу решили:
20
всего попыток:
23
Параллелограмм разбивается на четыре треугольника с целочисленными площадями так, как показано на рисунке. Найти площадь внутреннего треугольника шестого по счёту по величине площади параллелограмма, для которого выполнятся эти условия, считая первым параллелограмм с площадями треугольников 24,25,26,55.
Задачу решили:
11
всего попыток:
18
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).
Задачу решили:
8
всего попыток:
13
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.
Задачу решили:
9
всего попыток:
10
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.
Задачу решили:
7
всего попыток:
15
Определим g(m) как наименьшее натуральное число, которое встречается ровно в m пифагоровых тройках. Например, g(1)=3 и g(2)=5, т.к. числа 1 и 2 не встречаются ни в одной пифагоровой тройке, каждое из чисел 3 и 4 встречается ровно в одной пифагоровой тройке, а число 5 – ровно в двух: Найдите наименьшее натуральное число m, для которого g(m)>12345.
Задачу решили:
11
всего попыток:
16
В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.
Задачу решили:
22
всего попыток:
37
Найдите наименьший периметр прямоугольного треугольника, все стороны которого – рациональные числа, а площадь равна 5.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|