img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 82
всего попыток: 215
Задача опубликована: 24.02.12 08:00
Прислал: levvol img
Источник: Задача А.Пуанкаре
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

В казино десятая часть игроков - профессионалы. Вероятность вытащить туза из колоды для профессионала равна 9/10, для обычного игрока 1/13. Один из партнеров по игре, перемешав колоду, сразу вытаскивает  туза. Чему равна вероятность, что перед нами профессионал.

Задачу решили: 51
всего попыток: 141
Задача опубликована: 14.03.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите максимальное целочисленное значение длины диагонали многогранника, если сумма длин его рёбер равна 2012.

Задачу решили: 21
всего попыток: 106
Задача опубликована: 27.04.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: zmerch

В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?

Задачу решили: 28
всего попыток: 40
Задача опубликована: 29.06.12 08:00
Прислала: allanick img
Вес: 1
сложность: 3 img
баллы: 100

Если бросить пару обычных костей (кубиков, грани которых пронумерованы точками от 1 до 6), то имется один вариант, когда выпадает в сумме 2, два варианта, когда выпадает в сумме 3 и т.д.

Необычные шестигранные кости - это такие кости, у которых:

  • количество точек на каждой грани  у них отлично от стандартного {1,2,3,4,5,6};
  • каждая грань содержит по крайней мере одну точку;
  • количество вариантов получить значение каждой суммы точно такое же, как и для пары обычных (стандартных) костей.

Значения  количества точек для каждой кости представьте в виде неубывающей последовательности чисел, например {1,2,2,3,3,4}, и далее в виде шестизначного числа, 122334.

Найдите все необычные кости и в качестве ответа дайте сумму найденных чисел.

Задачу решили: 50
всего попыток: 157
Задача опубликована: 08.08.12 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: nellyk

Муравей начинает свой путь в вершине куба и перемещается по ребрам в соответствии со следующим правилом: в каждой вершине он выбирает  одно из трех ребер выходящих из этой вершины. Каждое ребро он выбирает с одинаковой вероятностью, независимо от предыдущего выбора. Какова вероятность, что муравей побывает в каждой вершине лишь раз?

 

Задачу решили: 54
всего попыток: 147
Задача опубликована: 05.09.12 08:00
Прислал: admin img
Источник: Журнал "Квант"
Вес: 2
сложность: 3 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число n, n>2, такое что сумма квадратов последовательных n натуральных чисел равна квадрату некоторого натурального числа.

Задачу решили: 90
всего попыток: 103
Задача опубликована: 14.09.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?

Задачу решили: 71
всего попыток: 199
Задача опубликована: 06.02.13 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Какова вероятность того, что два случайных натуральных числа  являются взаимно простыми, т.е. их наибольший общий делитель равен 1. (Ответ представить в виде округленного до целого значения числа процентов).

Задачу решили: 39
всего попыток: 75
Задача опубликована: 22.02.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
баллы: 100

Если в мешке находится по 3 шара черного, белого и красного цвета, как известно, вероятность вытащить два шара, например, красного цвета в этом случае равна Pк=3/9 ·2/8=1/12, а вероятность выташить наугад два шара любого одинакового цвета P=1/4.

В нашем мешке находится некоторое количество x=n·m шаров: n различных цветов, а шаров каждого цвета ровно m штук. Нетрудно посчитать вероятность P1 выташить два шара любого одинакового цвета для этого случая. Когда в мешок добавили 52 шара нового цвета, которого в мешке не было оказалось, что вероятность P2 (для нового количества шаров и цветов) вытащить два шара одинакового цвета не изменилась, и осталось той же, что была до добавления шаров нового цвета. То есть P1=P2

Сколько всего x шаров могло находиться в таком мешке? (до добавления 52 шаров). Если вариантов xi несколько, в ответе укажите сумму всех вариантов. Необходимо учитывать разумные ограничения, что m>1 и n>1.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.