Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
74
всего попыток:
96
Найти максимальное значение параметра a, при котором верно неравенство: ax2-2x > 3a-1 для всех x <0.
Задачу решили:
56
всего попыток:
150
Известно, что a2+4b2=4 и cd=4. Чему равен минимум выражения (a-d)2+(b-c)2? Ответ укажите с точностью до 2-х знаков после запятой.
Задачу решили:
77
всего попыток:
80
Найти максимальное значение x+y, если известно, что y(x+y)2=9 и y(x3-y3)=7.
Задачу решили:
45
всего попыток:
196
Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол. Сколько в этом множестве пар подобных парабол?
Задачу решили:
41
всего попыток:
99
В конечной последовательности, состоящей из натуральных чисел, встречается ровно 2006 различных чисел. Известно, что если из какого-нибудь члена этой последовательности вычесть 1, то в полученной последовательности будет встречаться не менее 2006 различных чисел. Найдите минимальную возможную сумму членов исходной последовательности
Задачу решили:
48
всего попыток:
77
Рассмотрим вещественные числа: t > 0 x = (1 + 1/t)t y = (1 + 1/t)t+1 Чему равна точная нижняя граница множества значений выражения xy ? Округлите ответ с точностью 2-х знаков после запятой.
Задачу решили:
89
всего попыток:
99
Про функцию f(x) известно, что f(1) = 1, и для любых x, y выполнено тождество f(x+y) = 2xf(y)+3yf(x). Найдите f(15).
Задачу решили:
59
всего попыток:
62
Найдите максимальное значение f(1) если f: Z ? Z такая, что для любых целых чисел х и у выполнено равенство f(f(x)+y+1) = x+f(y)+1.
Задачу решили:
67
всего попыток:
164
Если x=0,99999999999999999999 (двадцать девяток после запятой), то чему равна целая часть значения выражения: x/1 + x2/2 + x3/3 + . . . ?
Задачу решили:
29
всего попыток:
133
Определите количество пар натуральных чисел x и y, для которых последовательность zn=(xn+yn)/20n не является возрастающей
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|