img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 17
Задача опубликована: 02.08.19 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В ряду 111 ... 111 записаны 2018 единиц. Какое наибольшее количество знаков "+" или "-" можно поставить в этом ряду (не более одного знака между каждой группой единиц), чтобы полученное выражение давало в итоге 8102?

Задачу решили: 20
всего попыток: 44
Задача опубликована: 22.11.19 08:00
Прислал: admin img
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Пусть a1, a2, ..., a2019 неотрицательные действительные числа, сумма которых равна 1. Найдите максимальное значение суммы всех произведений aiaj для всех различных i и j, таких что i|j (i - делитель j).

Задачу решили: 42
всего попыток: 47
Задача опубликована: 27.01.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Вовочка отпилил от каждой ножки табуретки по кусочку. После этого табуретка стала стоять наклонно, но по-прежнему касалась пола всеми ножками. Длины трёх отпиленных кусочков 7, 9 и 13. Найдите все возможные длины четвёртого кусочка и укажите их сумму. (Сиденье табуретки - квадратное, ножки - перпендикулярны сиденью и можно считать бесконечно тонкими, т.е. касаются пола одной точкой.)

Задачу решили: 27
всего попыток: 36
Задача опубликована: 11.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется 100 сейфов, каждый из которых можно открыть только своим ключом. Ключи случайным образом поместили по одному во все сейфы и захлопнули дверцы. Затем взломали 2 сейфа и получили 2 ключа. Найдите вероятность того, что получится открыть все остальные сейфы не взламывая.

Задачу решили: 32
всего попыток: 45
Задача опубликована: 15.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Имеется 90 карточек с номерами от 1 до 90. Из них вытаскивают 5. Какова вероятность того, что на них будут хотя бы два последовательных номера?

Задачу решили: 26
всего попыток: 63
Задача опубликована: 19.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Бабушка к Пасхе покрасила яйца: 10 красных, 10 желтых и 10 розовых. Первой к ней в гости пришла внучка и случайным образом взяла три яйца. Затем к ней в гости пришел внук и тоже случайным образом взял три яйца. Какова вероятность того, что внук взял яйца трех различных цветов?

Задачу решили: 25
всего попыток: 35
Задача опубликована: 29.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Имеются две модели октаэдров: каркасная и бумажная.

2 октаэдра

Число k – это отношение длины ребра каркасного октаэдра к длине ребра бумажного октаэдра. Ребра каркасного октаэдра считать бесконечно тонкими. При каком наименьшем значении k бумажный октаэдр можно вставить внутрь каркасного октаэдра? В ответе укажите квадрат этого отношения.

Задачу решили: 30
всего попыток: 84
Задача опубликована: 27.05.20 08:00
Прислал: avilow img
Источник: Книга "Математика, ЕГЭ-2012" (Легион)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Одна из вершин куба симметрично отражена относительно центра каждой его грани. Полученные таким образом шесть точек являются вершинами выпуклого многогранника. Найдите его объём, если объём куба равен 36.

Задачу решили: 38
всего попыток: 60
Задача опубликована: 20.07.20 08:00
Прислал: avilow img
Источник: По мотивам ЕГЭ
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: vochfid

При исполнении пенальти футболист попадает в створ ворот с вероятностью 0,9. Вратарь во время пенальти угадывает направление с вероятностью 0,5. Вероятность того, что вратарь отразит мяч, если угадает направление, составляет 0,7, а вероятность того, что вратарь отразит мяч, если не угадает направление, составляет 0,1.  Какова вероятность, что футболист забьет гол вратарю? Ответ укажите в процентах.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 02.10.20 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: mikev

Даны три точки: A = (-20, 0, 0), B = (20, 0, 0), C(0, 20√3, 0). Назовем точку D(x, y, z) подходящей, если расстояние от неё до какой-нибудь из этих трёх точек равно сумме расстояний от D до двух других. Чему равен объём наименьшего шара, содержащего все подходящие точки? В качестве ответа введите целую часть значения объёма.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.