img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 24
всего попыток: 78
Задача опубликована: 18.05.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.

Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

Задачу решили: 27
всего попыток: 38
Задача опубликована: 23.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В алфавите из n букв можно составлять слова в которых стоящие рядом буквы различны и из которых вычеркиванием букв нельзя получить слова вида abab, гда a и b различные. Найдите максимально возможную длину слова. В ответе укажите длину слова для n = 33.

Задачу решили: 26
всего попыток: 61
Задача опубликована: 11.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.

Задачу решили: 29
всего попыток: 70
Задача опубликована: 26.02.21 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Однажды на DIOFANT.RU было опубликовано 5 задач. Среди пользователей сайта не оказалось двух, кто решил одни и те же задачи. Если исключить любую задачу, то выбрав любого пользователя, можно найти и другого, решившего из оставшихся четырёх задач те же, что и он. Сколько пользователей решало задачи?

Задачу решили: 18
всего попыток: 36
Задача опубликована: 26.03.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021?

Сколько квадратов?

На рисунке изображён пример квадрата в точечной сетке 5x8.

Задачу решили: 15
всего попыток: 48
Задача опубликована: 10.11.21 08:00
Прислал: avilow img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.

Задачу решили: 30
всего попыток: 45
Задача опубликована: 20.12.21 08:00
Прислал: admin img
Источник: В. И. Арнольд, "Задачи для детей от 5 до 15 л...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)

Задачу решили: 18
всего попыток: 35
Задача опубликована: 18.02.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.