Лента событий:
solomon предложил задачу "Новогодний пример не для программистов." (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
73
Вася, Петя, Коля и Толя в разных головных уборах. Вася старше человека в шляпе на 2 года, человек в кепке старше Коли на 5 лет, Петя старше человека в шапке на 3 года. Кто старше и на сколько лет из двоих: Толи и человека в феске? В ответе указать только число лет.
Задачу решили:
52
всего попыток:
66
Две окружности разных радиусов, расположены так, что центр меньшей находится на большей окружности, как на рисунке. Известно, что длина отрезка BD равна длине BC. Точка A - центр большей окружности. Найти длину отрезка AD, если радиусы окружностей равны 5 и 3.
Задачу решили:
48
всего попыток:
67
Три одинаковых прямоугольных треугольника с одним из углов равным 60 градусов располжены как на рисунке. Найдите отношение длины синей линии к длине красной.
Задачу решили:
41
всего попыток:
44
На отрезке AB длиной 10см. отмечена точка С так, что АС:СВ=5:12. По одну сторону отрезка АВ построены два квадрата АСDE и CBFG. Прямая, содержащая отрезок AD,пересекает FG в точке H. Прямые, содержащие отрезки AG и BH,пересекаются в точке K. Найти BK.
Задачу решили:
65
всего попыток:
72
Площадь квадрата равна 100, найти площадь синей части.
Задачу решили:
36
всего попыток:
68
Внутри угла в 60 градусов расположена точка. Расстояния от этой точки до сторон (лучей) и вершины угла равны различным целочисленным значениям. Найти наименьшее значение суммы этих расстояний.
Задачу решили:
42
всего попыток:
58
В треугольнике через точку, являющуюся центром тяжести проведена прямая линия, которая делит его на две части. Найти минимальное отношение площадей полученных частей.
Задачу решили:
24
всего попыток:
42
Найти количество пар натуральных чисел (m, n) m < n ≤ 100 для которых есть по крайней мере одно натуральное число k (m < k < n) которое делится на любой общий делитель m и n.
Задачу решили:
21
всего попыток:
64
У кладовщика есть 120 кг сахара, двухчашечные весы и гиря на 8 кг. За какое минимальное количество взвешиваний можно отвесить 35 кг сахара?
Задачу решили:
13
всего попыток:
52
Ребра правильного тетраэдра поделены на 6 равных частей. Через все точки деления провели все возможные плоскости параллельные граням тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|