img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 70
всего попыток: 119
Задача опубликована: 17.09.12 08:00
Прислала: allanick img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В прямоугольном треугольнике ABC с прямым углом при вершине А, биссектриса прямого угла пересекает гипотенузу BC в точке D, так что DAB = 45°.  Если CD = 1 и BD = AD + 1,  найти длину AD.

m111_.png

 

Ответ представить в виде целого числа, умножив результат на 1000 и  округлив до ближайшего целого.

Задачу решили: 134
всего попыток: 155
Задача опубликована: 26.09.12 08:00
Прислал: Sam777e img
Источник: Задача 212. Окружности на плоскости
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Angelina

Через одну и ту же точку провели 2012 различных окружностей. На какое наименьшее число частей они могут разбить плоскость?

Задачу решили: 46
всего попыток: 60
Задача опубликована: 28.09.12 08:00
Прислал: OlegSha img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В остроугольном треугольнике ABC угол которого \angle A = \frac{\pi}{4}, внутри отрезков AB и AC можно выбрать две точки D и E так, что BD=CE=BC. Найдите длину отрезка DE, если квадрат расстояния между центрами вписанной и описанной окружностей треугольника ABC d^2=72962.

Задачу решили: 37
всего попыток: 133
Задача опубликована: 05.10.12 08:00
Прислал: leonid img
Источник: Пособие для учащихся Э.Г.Готмана
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.

Задачу решили: 179
всего попыток: 282
Задача опубликована: 08.10.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

На углу дома, размеры которого - 6 метров на 4 метра, привязана собака. Длина привязи - 10 метров.

dog.jpg

Какова площадь участка доступного собаке?

Число ∏ (Пи) округлить до 3.

Задачу решили: 30
всего попыток: 406
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

+ 17
  
Задачу решили: 69
всего попыток: 71
Задача опубликована: 07.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.

Задачу решили: 23
всего попыток: 252
Задача опубликована: 09.11.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На стороне BC выпуклого четырёхугольника произвольным образом выбрана точка E. Окружности, вписанные в треугольники ABE, CDE, AED, имеют общую касательную. Найдите длину стороны AD, если AB=32, BC=36, CD=48. В ответе введите сумму минимального и максимального возможных значений.

Задачу решили: 68
всего попыток: 69
Задача опубликована: 12.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC 

Задачу решили: 80
всего попыток: 104
Задача опубликована: 14.11.12 08:00
Прислал: pvpsaba img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Площадь трапеции равна 50, а сумма ее диагоналей - 20. Найти квадрат высоты трапеции.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.