img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 47
всего попыток: 227
Задача опубликована: 05.12.10 08:00
Прислала: KATEHbKA img
Источник: Всеукраинская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Вдоль дороги расставлены светофоры на расстоянии 1 км друг от друга. В течение 1 минуты с начала каждого часа на них загорается красный свет, запрещая проезд, а остальное время горит зеленый свет. Мотоциклист начинает движение с постоянной скоростью у светофора, на котором только что загорелся красный свет и за 10 часов пути ни разу не встретил красного света (ни разу не затормозил). Какое наибольшее расстояние он мог проехать за это время? Ответ округлите до целого числа метров.

Задачу решили: 63
всего попыток: 143
Задача опубликована: 06.12.10 12:00
Прислала: Marishka24 img
Источник: Азиатско-Тихоокеанская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Найдите максимально возможное число членов последовательности, состоящей из таких ненулевых целых чисел, что сумма любых семи из них, идущих подряд, — положительна, а любых одиннадцати, идущих подряд, – отрицательна.

Задачу решили: 104
всего попыток: 198
Задача опубликована: 07.12.10 08:00
Прислала: Marishka24 img
Источник: Putnam Competition
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Сколько существует натуральных чисел (включая 1), каждое из которых является делителем по крайней мере одного из чисел 1040 и 2030?

Задачу решили: 101
всего попыток: 208
Задача опубликована: 08.12.10 12:00
Прислала: Marishka24 img
Источник: Екатеринбургская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Сумма квадратов пары целых чисел, каждое из которых лежит в промежутке от 1 до 1000, делится на 121. Сколько существует различных пар с этим свойством? (Пары (x,y) и (y,x) считаются одинаковыми.)

Задачу решили: 142
всего попыток: 359
Задача опубликована: 09.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Ленивый Аппроксидон решил укрепить здоровье, подтягиваясь на турнике. Всего он подтянулся 12 раз, при этом каждое следующее подтягивание приходилось на первое число следующего по алфавиту (русскому) месяца. Первый раз он подтянулся 1-го августа. Сколько месяцев прошло между первым и двенадцатым подтягиваниями Аппроксидона?

Задачу решили: 77
всего попыток: 112
Задача опубликована: 10.12.10 08:00
Прислала: Marishka24 img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?

Задачу решили: 44
всего попыток: 155
Задача опубликована: 10.12.10 12:00
Прислал: COKPAT img
Источник: Международная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько существует натуральных чисел m от единицы до миллиона включительно, для каждого из которых найдётся натуральное число N, имеющее ровно в m раз меньше различных натуральных делителей, чем его квадрат N2?

Задачу решили: 61
всего попыток: 113
Задача опубликована: 11.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Все целые числа от 1 до 999 выписали в строку (совсем необязательно в порядке возрастания). В каждой пятёрке чисел, написанных подряд, подчеркнули среднее по величине (т.е. третье по возрастанию). Какое наименьшее количество чисел могло быть подчеркнуто?

Задачу решили: 136
всего попыток: 185
Задача опубликована: 12.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Семь шахматистов сыграли турнир в один круг. (За победу начислялось 1 очко, за ничью — 1/2, за поражение — 0.) Победитель набрал в два раза больше очков, чем в сумме шахматисты, занявшие три последних места. Петя занял 4-е место, набрав три очка. Как он сыграл с занявшим 3-е место (1 — выиграл, 0 — проиграл, 1/2 — сыграл вничью)? 

Задачу решили: 76
всего попыток: 104
Задача опубликована: 13.12.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.