img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Угол DAM" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 54
Задача опубликована: 13.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите 20-е по счету натуральное число, сумма цифр которого равна 2020.

Задачу решили: 47
всего попыток: 56
Задача опубликована: 15.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Найдите 2020-е по счету число натурального ряда, которое нельзя представить в виде произведения двух последовательных чисел

Задачу решили: 23
всего попыток: 48
Задача опубликована: 17.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?

Задачу решили: 28
всего попыток: 53
Задача опубликована: 20.01.20 08:00
Прислал: TALMON img
Источник: Journal of Recreational Mathematics
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.

Задачу решили: 14
всего попыток: 16
Задача опубликована: 22.01.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: avilow (Николай Авилов)

На стороне АЕ правильного пятиугольника ABCDE внешне построен квадрат AEFG. На диагонали АС тоже построен квадрат ACHJ (вершина В внутри этого квадрата). Найти угол FBH в градусах.

Задачу решили: 50
всего попыток: 73
Задача опубликована: 24.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Последовательность чисел 1, 11, 20, 102, 111, ... интересна тем, что сумма цифр каждого из них равна количеству цифр из которых оно состоит. Найдите 22-е число в этой последовательности.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 27.01.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Вовочка отпилил от каждой ножки табуретки по кусочку. После этого табуретка стала стоять наклонно, но по-прежнему касалась пола всеми ножками. Длины трёх отпиленных кусочков 7, 9 и 13. Найдите все возможные длины четвёртого кусочка и укажите их сумму. (Сиденье табуретки - квадратное, ножки - перпендикулярны сиденью и можно считать бесконечно тонкими, т.е. касаются пола одной точкой.)

Задачу решили: 45
всего попыток: 50
Задача опубликована: 29.01.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите наибольшее значение определителя матрицы четвертого порядка, у которой на главной диагонали записаны числа 1, 2, 3 и 4, а все остальные числа одинаковы. Определитель изображен на рисунке.

Задачу решили: 21
всего попыток: 29
Задача опубликована: 31.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: vochfid

На сторонах AB, BC и CA треугольника ABC  расположены точки P, Q и R соответственно, при этом |AP| = |AR|, |BP| = |BQ| и |CQ| = |CR|. Какое максимальное количество разных наборов таких точек P, Q, R может существовать для протзвольного треугольника ABC?

Задачу решили: 27
всего попыток: 53
Задача опубликована: 03.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Трехчлены x2+ax+b и x2+ax-b, где a и b - натуральные числа и НОД(a,b)=1, приводимы в целых числах (т. е. могут быть представлены в виде произведения двучленов с целыми коэффициентами). Найти минимальное значение b, для которого существуют два различных значения a. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.