img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 665
всего попыток: 2181
Задача опубликована: 07.03.09 11:00
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: lime (Kozinson Nik)

Играют двое, один из них загадывает 5 натуральных двузначных чисел x1, x2, x3, x4, x5. Второму разрешается спрашивать, чему равна сумма

a1·x1+a2·x2+a3·x3+a4·x4+a5·x5,

где a1, a2, a3, a4, a5 — любые целые числа. Какое наименьшее число вопросов потребуется отгадывающему, чтобы узнать задуманные числа?

Задачу решили: 188
всего попыток: 2145
Задача опубликована: 11.03.09 11:22
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

В пространстве даны четыре точки, не лежащие в одной плоскости.  Сколько существует различных параллелепипедов, для каждого из которых все данные точки являются вершинами? (Различные — как множества; например, равные параллелепипеды, но сдвинутые друг относительно друга, тоже считаются различными.)

Задачу решили: 605
всего попыток: 1058
Задача опубликована: 14.03.09 20:26
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: ktulhu (Михаил Селянин)

Длины пяти последовательных сторон описанного около окружности шестиугольника равны 5, 6, 7, 8 и 9. Найдите длину шестой стороны.

Задачу решили: 462
всего попыток: 532
Задача опубликована: 11.03.09 19:42
Прислал: demiurgos img
Источник: Сообщено С.В.Репиным
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Zlyndin

Придумайте шестизначное число, обладающее следующим свойством: при его умножении на 2, 3, 4, 5 и 6 цифры в нём лишь переставляются, но не меняются.

Задачу решили: 1076
всего попыток: 1938
Задача опубликована: 12.03.09 13:25
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ZSergio (Sergio Zaichenko)

Из А в Б и из Б в А одновременно выехали навстречу друг другу два грузовика. Ехали они по одной и той же дороге с постоянными скоростями и встретились в полдень, но не остановились, а каждый продолжал свой путь с той же скоростью. Первый грузовик прибыл в Б в 4 часа дня, а второй приехал в А в 9 часов вечера. Сколько часов ехали грузовики до того, как встретились?

+ 71
+ЗАДАЧА 20. Гангстеры (Н.Б.Васильев)
  
Задачу решили: 410
всего попыток: 1554
Задача опубликована: 14.03.09 20:26
Прислал: demiurgos img
Источник: "Квант", 1991
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

50 гангстеров стреляют друг в друга одновременно. Каждый стреляет в ближайшего к нему гангстера (или в одного из ближайших, если несколько человек находятся на равном расстоянии от него) и убивает его наповал. Найдите наименьшее возможное количество убитых. (Гангстеры — это различные точки на плоскости.)

Задачу решили: 582
всего попыток: 653
Задача опубликована: 20.03.09 11:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 34

Найти разность (1+2+3+...+n)2 − (13+23+33+...+n3) при n=200910.

Задачу решили: 764
всего попыток: 1940
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 293
всего попыток: 668
Задача опубликована: 21.03.09 18:18
Прислал: demiurgos img
Источник: Олимпиада Технион (Хайфа)
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Galina

Какая цифра стоит на 100-м месте после запятой в десятичной записи числа (44+2009)2009?

Задачу решили: 171
всего попыток: 401
Задача опубликована: 25.03.09 19:55
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: NushN (Анна Григорук)

Рассмотрим два различных тетраэдра, вписанные в куб так, что вершины каждого являются вершинами куба, а ребра — диагоналями граней.  Во сколько раз объем куба больше, чем пересечение этих тетраэдров?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.