Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
66
всего попыток:
80
Натуральное число N делится нацело на 24. Какой остаток может получиться при делении на 24 суммы всех натуральных делителей числа N−1 (включая единицу и N−1)? В ответе напишите сумму всех возможных различных остатков.
Задачу решили:
133
всего попыток:
236
Пусть x — четырёхзначное число в десятичной записи. Я написала его цифры в обратном порядке и полученное число вычла из x. В результате я получила число 1818. Найти все такие числа x. В ответе укажите их количество.
Задачу решили:
53
всего попыток:
131
Сколько существует таких натуральных чисел N, что найдутся ровно 15 квадратов целых чисел, расстояние от которых до N не превышает 250? Иными словами, сколько существует таких N, что найдутся ровно 15 квадратов целых чисел A2, для которых выполнено условие ? (Не забудьте, что 0 — тоже квадрат целого числа!)
Задачу решили:
171
всего попыток:
333
Гоблин родился в понедельник. Какой день недели будет через 3652011 суток после его рождения? (В ответе укажите: 1 — если понедельник, 2 — если вторник, 3 — если среда и т.д.)
Задачу решили:
70
всего попыток:
200
Найдите максимальное натуральное число N такое, что число N! представимо в виде произведения N−3 последовательных натуральных чисел.
Задачу решили:
81
всего попыток:
121
Сколько существует натуральных чисел, кубы которых не представимы в виде разности квадратов двух целых чисел?
Задачу решили:
36
всего попыток:
159
Натуральные числа a и b таковы, что число — целое и . Каков максимально возможный наибольший общий делитель чисел a и b?
(Задача отредактирована, как предложил Vkorsukov.)
Задачу решили:
93
всего попыток:
215
По кругу выписаны числа 1,2,3,...,10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшую из них. Какое наибольшее число могло появиться на доске?
Задачу решили:
79
всего попыток:
168
Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?
Задачу решили:
75
всего попыток:
127
Пусть A(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 3, а B(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 5 или на 7 (можно и на 5, и на 7 сразу, но каждое такое число учитывается только один раз). Например, A(10)=3 и B(40)=12. Найдите наибольшее n, для которого A(n)=B(n).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|