img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 17
всего попыток: 35
Задача опубликована: 21.05.14 09:03
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа 1 ≤ ai ≤ 4. Найдите максимум значения выражения |a1 - 2a2| + |a2 - 2a3| + |a3 - 2a4| + ... + |a200 - 2a201|.

Задачу решили: 38
всего попыток: 81
Задача опубликована: 23.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что для положительных действительных чисел a, b и c, верно:

a2 + b2 + c2 = 5(ab+bc+ca)/2.

Найдите минимум выражения (a+b+c)/(abc)1/3. Ответ укажите с точностью до 3-х знаков после запятой.

Задачу решили: 33
всего попыток: 99
Задача опубликована: 26.05.14 09:53
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Окружность S и лежащая на ней точка P(a,b) обладают следующими свойствами:

(i) Касательная в точке P проходит через начало координат.
(ii) Центр окружности S лежит в четвертой четверти.
(iii) S проходит через точки (1,0) и (9,0).
(iv) b ≥ 9/5.

Для точки P(a,b) обозначим за M и m максимум и минимум выражения

10_formula_Page_3.png

Найдите 36M + 27m2.

Задачу решили: 47
всего попыток: 136
Задача опубликована: 16.06.14 08:00
Прислал: Zoxan img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Дана арифметическая прогрессия 1, 18, 35, ... Из неё выделили монотонную последовательность {an}, все члены который можно записать с помощью одних троек. Найдите сумму цифр числа a10.

Задачу решили: 15
всего попыток: 181
Задача опубликована: 02.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти количество целых чисел n (2 ≤ n ≤ 100) для которых существует многочлен p(x) с действительными коэффициентами и степени меньшей n такой, что  для всех целых x, p(x) является целым числом, тогда и только тогда, если x не кратно n.

Задачу решили: 54
всего попыток: 105
Задача опубликована: 04.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Известно, что для многочлена 5-й степени p(x):
p(1)=1, p(2)=1, p(3)=2, p(4)=3, p(5)=5, p(6)=8.

Чему равно p(7)?

Задачу решили: 32
всего попыток: 72
Задача опубликована: 18.07.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти количество целых чисел n (1 ≤ n ≤ 300) для которых существует многочлен степени n с целыми коэффициентами, коэффициентом при xn равен 1, а его значение при любых целых значениях x, не делится на n.

Задачу решили: 38
всего попыток: 115
Задача опубликована: 21.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Действительное число x удовлетворяет условию:

1/[x]=1/[2x]+1/[3x]+1/[5x], где [x] - целая часть от x.

Пусть m - наибольшее положительное, а M - наименьшее положительное значения такие, что  m≤x≤M, и M+m представляется в виде нескоратимой дроби p/q. 

Чему равно p+q?

Задачу решили: 24
всего попыток: 116
Задача опубликована: 01.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.

Задачу решили: 39
всего попыток: 92
Задача опубликована: 13.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.