Лента событий:
Kf_GoldFish
добавил
комментарий к
решению
задачи
"Ломаные маршруты - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
31
В числовом ребусе
Задачу решили:
38
всего попыток:
40
Найдите сумму всех n таких, что n(1!+2!+...+n!)=(n+1)!
Задачу решили:
21
всего попыток:
32
Длина большего основания AD равнобокой трапеции ABCD с целочисленными значениями наибольшей площади и сторон равна 11. На продолжении прямой АВ отмечена точка В1 (|АВ|=|ВВ1|),на продолжении прямой ВС отмечена точка С1 (|ВС|=|СС1|), на продолжении прямой СD отмечена точка D1 (|CD|=|DD1|),на продолжении прямой DA отмечена точка А1 (|DA|=|AA1|). Найти площадь четырехугольника А1В1С1D1.
Задачу решили:
51
всего попыток:
62
Работник договорился, что за 1 год работы на ферме ему заплатят 80000 рублей + корова. По независимым от него обстоятельствам, он был вынужден уйти после 7 месяцев работы, и ему заплатили: 30000 рублей + корова. Всё честно. Сколько рублей стоит корова?
Задачу решили:
31
всего попыток:
45
В ребусе this + is = easy заменили цифры буквами (одинаковые - одинаковыми, разные - разными). Какое количество решений имеется у ребуса?
Задачу решили:
22
всего попыток:
24
В правильной треугольной призме ABCA1B1C1 на ребрах AC и A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.
Задачу решили:
25
всего попыток:
35
В слове levvol заменили одинаковые буквы на одинаковые цифры, а различные буквы – на различные цифры. Какое наименьшее 6-значное число levvol можно представить как произведение простого и составного числа ровно двумя способами? Порядок множителей неважен: x*y и y*x это один и тот же способ. Задача посвящена памяти нашего ушедшего коллеги, можно сказать неординарного, Льва Волкова.
Задачу решили:
19
всего попыток:
37
У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг. Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?
Задачу решили:
16
всего попыток:
33
Куб 3х3х3 разбит на единичные кубики, все их вершины отмечены точками. Найдите число всех правильных треугольников, вершинами которых являются отмеченные точки. Три из них изображены на рисунке.
Задачу решили:
16
всего попыток:
26
На сторонах АВ и ВС треугольника АВС отмечены точки D и E соответственно так, что отрезки АЕ и CD пересекаются в точке F, делят треугольник на три треугольника CEF, ADF, ACF с целочисленными площадями, образующими арифметическую прогрессию, и четырехугольник BEFD с целочисленной площадью. Найти наименьшую площадь треугольника АВС.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|