Лента событий:
tubaki решил задачу "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
363
всего попыток:
707
В ящике лежат 3 пары чёрных носков, 2 пары коричневых и 1 пара синих. Вы вынимаете носки в темноте, не видя их цвета. Какое минимальное число носков Вам придётся достать, чтобы среди них обязательно нашлись две пары, каждая из которых состоит из двух носков одного цвета? (Все носки одного размера, правые и левые не отличаются, вытащенные пары носков могут быть разных цветов.)
Задачу решили:
121
всего попыток:
263
Какое минимальное число машин, грузоподъёмностью 1,5 тонны каждая, нужно заказать для перевозки нескольких ящиков общим весом 13,5 тонн, если известно, что вес каждого из них не превосходит 350 кг? (Все машины делают только по одному рейсу. Заказанных машин должно хватить независимо от общего количества ящиков, которое заранее неизвестно.)
Задачу решили:
52
всего попыток:
284
Перед двумя игроками 3 кучки спичек. В первой кучке 111 спичек, во второй — 114, а в третьей — 116 спичек. Каждый из игроков своим ходом берёт из любой (но только одной!) кучки произвольное целое число спичек от 1 до 11 включительно. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку со стола. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе напишите подряд, без пробелов, номер кучки и количество спичек.
Задачу решили:
126
всего попыток:
337
У Вас есть 5 камешков, массы любых двух из которых различны, и чашечные весы без гирь. За какое наименьшее число взвешиваний Вам удастся гарантированно расположить камешки по возрастанию массы?
Задачу решили:
141
всего попыток:
237
На девяти жетонах написаны различные цифры от 1 до 9 (по одной цифре на каждом жетоне). Двое игроков берут по очереди по одному жетону. Выигрывает тот, у кого первого среди взятых им жетонов окажутся три, сумма цифр на которых равна 15. Кто выиграет, если соперник не будет поддаваться? (Если выиграет первый игрок — введите 1, если второй — введите 2, если будет ничья — введите 0.)
Задачу решили:
80
всего попыток:
576
Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)
Задачу решили:
143
всего попыток:
264
У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)
Задачу решили:
70
всего попыток:
278
Команда из 25 школьников участвует следующем конкурсе. Каждому из них надевают кепку одного из трёх заранее известных цветов так, что каждый видит кепки своих друзей, но не видит своей. После этого каждый школьник пишет на карточке свою фамилию и предполагаемый цвет своей кепки (подглядывать, что пишут другие, нельзя). Команда получает столько очков, сколько было сдано карточек с правильными ответами. Какое наибольшее число очков может гарантированно обеспечить себе команда, если школьники заранее договорятся о своих действиях?
Задачу решили:
104
всего попыток:
188
В ряд слева направо были выставлены гирьки массами 1 г, 2 г, …, 13 г. Из них осталось только семь подряд стоящих, а остальные шесть гирек потеряны. За какое наименьшее число взвешиваний на чашечных весах можно определить массы оставшихся гирек?
Задачу решили:
105
всего попыток:
227
Жили были три поросёнка. Один из них всегда говорит правду, другой всегда врёт, а третий — дипломат: может и правду сказать, и соврать. Но неизвестно, кто есть кто. Они же, как водится в таких задачах, всё знают друг про друга. Какое наименьшее число вопросов типа "да–нет" нужно задать, чтобы наверняка узнать, кто есть кто? Каждый вопрос можно задавать любому (но только одному!) поросёнку.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|