Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
71
Книга имеет 120 страниц, одна (1-я) из которых отведена под титул, одна — под аннотацию и еще одна — под оглавление. На остальных страницах напечатаны сказки, причем каждая сказка начинается с новой страницы. Сумма номеров страниц, на которых начинаются сказки, в пять раз меньше суммы номеров страниц, на которых они заканчиваются. Сколько сказок в книге?
Задачу решили:
46
всего попыток:
71
Найдите колчество пар целых чисел (x, y) таких, что (x2-y2)2=1+16y.
Задачу решили:
41
всего попыток:
46
На параболе y = x2+px+q лучи y=x и y=2x при x≥0 высекают две дуги. Эти дуги спроектированы на ось 0x. Найдите разницу длин проекций правой и левой дуг.
Задачу решили:
43
всего попыток:
60
Внутри параболы y=x2 расположены несовпадающие окружности O1, O2, O3, . . . так, что при каждом n > 1 окружность On касается ветвей параболы и внешним образом окружности On−1. Найдите диаметр окружности O2016, если известно, что диаметр O1 равен 1 и она касается параболы в ее вершине.
Задачу решили:
29
всего попыток:
59
Найдите сумму произведений пар действительных чисел b и c таких, что каждое уравнение x3+bx2+cx+10=0 и y3+(c+b2)y2-(c+b)y+(b3-c)=0 имеет по три различных целых корня
Задачу решили:
30
всего попыток:
61
Найдите количество пар действительных чисел b и c таких, что оба уравнения x3+bx2+cx+10=0 и y3+(b+21)y2+(14b+c+147)y+(49b+7c+353)=0 имеют по три различных целых корня.
Задачу решили:
60
всего попыток:
92
Найдите количество квадратных трехчленов x2+bx+c, корнями которых являются b и c.
Задачу решили:
30
всего попыток:
46
Сколько имеется способов, чтобы числа 20, 21, 22, . . . , 22017 можно было разбить на два непустых множества A и B так, что уравнение x2−S(A)x+S(B) = 0, где S(M)—сумма чисел множества M, имело целый корень?
Задачу решили:
32
всего попыток:
36
Найдите количество ограниченных функций f: R → R таких, что f(1) > 0 и f(x) удовлетворяют при всех x, y ∈ R неравенству f2(x + y) ≥ f2(x) + 2f(xy) + f2(y)?
Задачу решили:
62
всего попыток:
69
Решить уравнение и найти сумму произведений пар решений 9x2+9y2-300x-108y+2824=0.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|