img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

Задачу решили: 166
всего попыток: 397
Задача опубликована: 04.04.09 11:23
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

Прямоугольный лист бумаги разрезают по прямой на две части. Одну из частей разрезают по прямой на две части. Одну из трёх полученных частей снова разрезают по прямой на две части. Одну из четырёх полученных частей снова разрезают по прямой на две части, и т.д. Какое наименьшее число разрезов нужно сделать, чтобы получить 100 семиугольников?

Задачу решили: 388
всего попыток: 753
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: vitsel (Виталий Леонтьев)

  p

|sin(2009x)|dx = ?

0

Задачу решили: 264
всего попыток: 502
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Задачу решили: 194
всего попыток: 660
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: gpariska (Галина Парижская)

Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?

Задачу решили: 158
всего попыток: 508
Задача опубликована: 01.04.09 23:23
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: anuta_IV (Анна Иванова)

Про некоторую рощу известно, что расстояние между любыми двумя деревьями не превосходит утроенной разности их высот, а все деревья имеют высоту не более 100 м. Какова минимальная длина забора, которого заведомо хватит, чтобы обнести эту рощу? (Дайте ответ в метрах.)

+ 27
+ЗАДАЧА 45. Коробочка (Н.Б.Васильев)
  
Задачу решили: 115
всего попыток: 372
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Какова наибольшая возможная площадь ортогональной проекции на горизонтальную плоскость прямоугольного параллелепипеда со сторонами 10, 20 и 30 см? (Ответ дайте в квадратных сантиметрах.)

Задачу решили: 291
всего попыток: 684
Задача опубликована: 10.04.09 22:38
Прислал: demiurgos img
Вес: 1
сложность: 5 img
баллы: 100
Темы: алгоритмыimg

В тюрьму поместили 20 узников. Надзиратель сказал им:

«Я дам вам вечер поговорить друг с другом, а утром построю всех в колонну, надену каждому на голову красный, жёлтый или зелёный колпак, а потом спрошу каждого в указанном вами порядке, каков цвет надетого на него колпака. Сколько будет правильных ответов, стольких из вас я отпущу на свободу. Остальных скормлю крокодилам. Кого конкретно — решит жребий.

Каждый узник будет слышать все ответы, но сможет увидеть колпаки всех тех и только тех, кто стоит впереди в колонне. Отвечать нужно обязательно, причём только "красный", "жёлтый" или "зелёный", и сразу — пауза перед вопросом будет достаточной для размышлений. Таковы условия, если замечу жульничество — скормлю крокодилам всех!»

Какому максимальному числу счастливчиков узники смогут гарантировать освобождение?

Задачу решили: 62
всего попыток: 484
Задача опубликована: 10.04.09 22:37
Прислал: demiurgos img
Источник: Сообщено А.Гориновым
Вес: 5
сложность: 5 img
баллы: 100

В тюрьму поместили 6 узников.  Надзиратель сказал им:

«Я дам вам сегодня поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Завтра я вас по очереди отведу в комнату, где стоят 6 закрытых ящиков, в которые я положу разные номера от 1 до 6 (в каждый ящик по номеру), и разрешу открыть 3 любые ящика в произвольном порядке. Каждый из вас должен открыть ящик с номером своей очереди, а какой именно номер лежит в ящике вы увидите, как только его откроете. Если каждому из вас удастся открыть ящик с нужным номером, то я всех выпущу на свободу. А если хоть кто-то потерпит неудачу — скормлю всех крокодилам. Не волнуйтесь, я великодушен — перед приходом следующего узника я буду просто закрывать все ящики и не буду ни переставлять их, ни перекладывать номера. Я даже могу всех вас сегодня отвести в эту комнату и разрешить пометить ящики! А номера в них я положу потом.»

Какова максимальная вероятность освобождения узников при их правильной стратегии?

Задачу решили: 1391
всего попыток: 1960
Задача опубликована: 12.04.09 00:44
Прислал: demiurgos img
Источник: Математический кружок МЦНМО
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: LordDextra (Игорь Несвятипаска)

9 кг леденцов стоят дешевле 10 рублей, а 10 кг - дороже 11 рублей. Сколько копеек стоит 1 кг этих леденцов?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.