Лента событий:
avilow предложил задачу "Ломаные маршруты - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
52
всего попыток:
72
От центра окружности на расстоянии 5 проведена хорда. В оба получившихся сегмента вписаны квадраты, так что у обоих одна сторона лежит на хорде, а еще две точки на окружности. Найти разность длины сторон большего и меньшего квадрата.
Задачу решили:
32
всего попыток:
85
На каждой стороне треугольника отмечено по две точки, делящие её на три равных отрезка. Какую часть площади треугольника занимают эти три звезды, изображенные на рисунке?
Задачу решили:
57
всего попыток:
77
В квадрат со стороной 2 вписан прямоугольник так, что три его угла лежат на сторонах квадрата, при этом один угол находится в точке N, являющейся серединой стороны квадрата. Одна сторона прямоугольника лежит на линии, соединяющей N и вершину квадрата A. Найдите площадь прямоугольника.
Задачу решили:
29
всего попыток:
34
Треугольник ABC вписан в окружность. Точки M и H такие, что отрезок AM является диаметром, а отрезок AH перпендикулярен стороне BC. Докажите, что |BH|=|MC|.
Задачу решили:
55
всего попыток:
62
Лист бумаги размера 16×24 согнут так, что один угол находится в центре. Найти расстояние a.
Задачу решили:
33
всего попыток:
52
На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.
Задачу решили:
17
всего попыток:
41
На сторонах АВ и ВС треугольника АВС взяты соответственно 2 точки D и Е так, что AD=CE. Отрезки АЕ и СD пересекаются в точке F. В треугольниках ADF и CFE вписаны 2 окружности с центрами О1 и О2. Биссектриса угла АВС пересекает отрезок О1О2 в точке М. Известно, что |О1О2|=9, |МF|=2. Найти соотношении, которое нужно найти |O1M|/|MO2|.
Задачу решили:
39
всего попыток:
75
Четыре равносторонних треугольника расположены внутри большого квадрата так, что образовался еще один, малый, квадрат. Найдите сумму площадей этих четырех равносторонних треугольников, если сумма площадей большого и малого квадратов равна 64√3.
Задачу решили:
45
всего попыток:
52
Равносторонний треугольник поделен прямой линией на 2 части с одинаковыми периметрами. Найдите максимум отношений площадей полученных фигур.
Задачу решили:
38
всего попыток:
63
В четырехугольнике ABCD |AB|=6, угол ABC прямой, величина угла BCD равна 45°, а величина угла CAD вдвое больше величины угла ACB. Точка E на стороне BC выбрана так, что DE перпеникулярна AC. Найдите длину отрезка EC.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|