img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 89
Задача опубликована: 19.06.20 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Внутри равностороннего треугольника, включая и его стороны, выбрана произвольная точка. Из отрезков равных расстоянию от этой точки до вершин треугольника составляется новый треугольник. Сколько различных целочисленных значений в градусах может принимать наибольший угол нового треугольника?

Задачу решили: 22
всего попыток: 23
Задача опубликована: 22.06.20 08:00
Прислал: vochfid img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В выпуклом пятиугольнике длины сторон по часовой стрелке равны (последовательно) 13, 21, 28, 36 и 43. Докажите, что в такой пятиугольник нельзя вписать окружность.

Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

Задачу решили: 35
всего попыток: 43
Задача опубликована: 08.07.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В равнобедренном треугольнике АВС (АС - основание), боковая сторона которого равна 8, а основание равно радиусу описанной окружности, проведена высота BD и перпендикуляры DE, DF к боковым сторонам.

Пятиугольник в треугольникеНайти площадь пятиугольника AEOFC (O - центр описанной окружности).

Задачу решили: 30
всего попыток: 52
Задача опубликована: 13.07.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

В остроугольном треугольнике АВС с целочисленными сторонами наименьшего периметра угол ВАС в два раза больше угла АВС. Найти длину стороны ВС.

Задачу решили: 18
всего попыток: 22
Задача опубликована: 17.07.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β. 

Задачу решили: 24
всего попыток: 56
Задача опубликована: 22.07.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Сколькими способами можно расположить 4 точки на плоскости таким образом, что все расстояния между любыми двумя имели ровно два различных значения?

Задачу решили: 30
всего попыток: 51
Задача опубликована: 29.07.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Дан равносторонний треугольник KMN (|КМ|=32), вершины которого являются центрами квадратов, построенных на сторонах некоторого треугольника АВС.

Найдите площадь треугольника АВС, а в ответе укажите ближайшее целое число.

Задачу решили: 30
всего попыток: 33
Задача опубликована: 07.08.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).

Задачу решили: 27
всего попыток: 56
Задача опубликована: 19.08.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Около трапеции ABCD c основаниями |АВ|=3*|CD| описана окружность диаметром АВ. В точках А и С проведены касательные, которые пересекаются в точке К. Найти значение |KD|2, если известно, что оно равно численно 2*|АВ|.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.