![]()
Лента событий:
fortpost решил задачу "Сумма обратных величин в треугольнике" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
8
всего попыток:
26
На рисунке изображены две равные фигуры: слева желтая фигура, сложенная из 18 желтых U-пентамино, справа – зеленая фигура, сложенная из 30 зеленых I-тримино, употребив таким образом 18+30=48 фигурок. Сложите две равные фигуры, одну желтую, другую зеленую, употребив суммарно наименьшее количество желтых U-пентамино и зеленых I-тримино. ![]()
Задачу решили:
11
всего попыток:
53
На рисунке слева изображены три несимметричных пентамино, справа приведена фигура, сложенная из этих пентамино и имеющая ось симметрии. Сколько различных фигур, имеющих ось симметрии, можно сложить из этих трех пентамино? ![]()
Задачу решили:
10
всего попыток:
15
Площадь выпуклого восьмиугольника с углами 135 градусов и вершинами в узлах сетки равна 12,5 единичных квадратов (см. рисунок). Сколько аналогичных восьмиугольников площадью 16 единичных квадратов можно разместить на сетке? ![]()
Задачу решили:
16
всего попыток:
21
На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые? Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей. ![]()
Задачу решили:
14
всего попыток:
34
Египетский треугольник – это прямоугольный треугольник со сторонами 3, 4 и 5. Из двух таких треугольников можно сложить фигуру, имеющую ось симметрии, например, равнобедренный треугольник, изображенный на рисунке. Из какого наименьшего нечетного числа таких треугольников можно сложить фигуру, имеющую ось симметрии. В ответе укажите это число. ![]()
Задачу решили:
11
всего попыток:
25
21 точка расположена в узлах решетки в форме равностороннего треугольника (рис. слева). Сколько замкнутых маршрутов, обладающих поворотной симметрией 3-го порядка, можно проложить по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? Например, на рисунке справа показаны два различных симметричных маршрута на треугольном поле меньшего размера. ![]()
Задачу решили:
14
всего попыток:
28
Десятиклеточный самолетик, изображенный на рисунке слева, помещается в прямоугольник 5х4, два таких самолетика помещаются в прямоугольник 8х4, три таких самолетика помещаются в прямоугольник 11х4 (на рисунке в центре и справа). В какой прямоугольник наименьшего периметра можно поместить 7 таких самолетиков? В ответе укажите периметр этого прямоугольника. ![]()
Задачу решили:
17
всего попыток:
55
Одна прямая разрезает один n-угольник на 10 треугольников. Найдите максимально возможное значение n. ![]()
Задачу решили:
13
всего попыток:
23
Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4. Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|