Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
43
Вершины квадрата отрезками соединены с серединами его сторон. При этом квадрат разбивается на несколько частей, из которых некоторые закрашены. Какая часть квадрата закрашена?
Задачу решили:
30
всего попыток:
38
На стороне АВ треугольника АВС отмечена точка D так, что |ВС|=|АС|+|AD|. Внутренний угол А=88°, угол ADC=68°. Найти внутренний угол В в градусах.
Задачу решили:
31
всего попыток:
36
Внутри квадрата со стороной 100 расположены 4 круговых сектора с радиусами, равными стороне квадрата, центрами в вершинах квадрата каждый и радиальным углом 90°. Найти площадь пересечения всех 4-х секторов. Ответ округлить до ближайшего целого.
Задачу решили:
25
всего попыток:
29
В равнобедренный треугольник, боковая сторона которого в 2 раза больше основания, вписана окружность. К этой окружности проведены касательные паралельно сторонам треугольника, которые отсекли 3 треугольника. В каждый из этих треугольников тоже вписаны окружности. Найти отношение суммы площадей этих 3-х кругов к площади основного круга.
Задачу решили:
28
всего попыток:
61
Треугольник со сторонами арифметической прогрессии 6, 10, 14 заключен между описанной и вписанной окружностями. Найти сумму квадратов расстояний от точек касания вписанной окружности со сторонами треугольника до центра описанной окружности.
Задачу решили:
27
всего попыток:
37
Два луча, исходящие из прямого угла равнобедренного прямоугольного треугольника, делят гипотенузу на три целочисленных отрезка.Найти наибольшую длину гипотенузы, если угол между лучами 45°, длина наименьшего отрезка гипотенузы равна 20.
Задачу решили:
20
всего попыток:
64
Из вершины угла в 120 градусов равнобедренного треугольника выходят два луча под углом 60 градусов между ними и делят основание на три различных целочисленных отрезка. Найти основание третьего по величине такого треугольника.
Задачу решили:
35
всего попыток:
47
В прямоугольнике со сторонами 3 и 6 вписана окружность,касающаяся трех сторон. Какая часть диагонали принадлежит хорде окружности, образованной ею при пересечении.
Задачу решили:
39
всего попыток:
43
Дан эллипс с полуосями 5 и 12. Найти расстояние от центра эллипса до центра окружности, касающейся (внешним образом) эллипса и двух его параллельных касательных.
Задачу решили:
43
всего попыток:
47
Правильный шестиугольник разделен на 4 треугольника и 3 прямоугольника. Найдите отношение суммы площадей треугольников к сумме площадей прямоугольников.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|