![]()
Лента событий:
Lec добавил комментарий к задаче "Шуточный квадрат" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар. ![]()
Задачу решили:
78
всего попыток:
284
У остроугольного треугольника радиус описанной окружности равен 100. Найдите минимальное целое значение его периметра. ![]()
Задачу решили:
48
всего попыток:
206
Вычислите минимум функции ![]()
Задачу решили:
197
всего попыток:
335
Имеется 10 кучек монет, по 10 монет в каждой. Все монеты одинаковы на вид, но одна кучка целиком состоит из фальшивых монет, но какая именно — неизвестно. Известен лишь вес настоящей монеты, а также установлено, что каждая фальшивая монета на 0,1 грамма тяжелее, чем нужно. Монеты можно взвешивать на пружинных весах со стрелкой, измеряющие вес с точностью до 0,1 грамма. Какое минимальное число взвешиваний нужно произвести, чтобы отыскать кучку, состоящую из фальшивых монет? ![]()
Задачу решили:
83
всего попыток:
126
Сколько различных действительных решений имеет уравнение: ![]()
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1? ![]()
Задачу решили:
250
всего попыток:
325
Некто решил раздать лишние после варки компота яблоки. Первому встречному он отдал половину всех яблок плюс пол-яблока. Второму — половину оставшихся плюс пол-яблока. Третьему — также половину оставшихся плюс пол-яблока, после чего яблок у него не осталось. Сколько было роздано яблок? ![]()
Задачу решили:
130
всего попыток:
147
Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 — пятая степень натурального числа. ![]()
Задачу решили:
44
всего попыток:
86
Число называется оранжевым, если оно образуется при выписывании друг за другом без пробелов (в десятичной системе счисления) всех натуральных чисел от 1 до N, где N>1. Например, числа 12345 и 123456789101112131415 являются оранжевыми, а 1 — нет. Сколько решений в оранжевых числах имеет уравнение xy=z? ![]()
Задачу решили:
91
всего попыток:
139
Внутри прямоугольника
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|