Лента событий:
mda решил задачу "Красная фигура" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
222
всего попыток:
330
Бригада трактористов должна была вспахать два поля, одно из которых в два раза больше другого. С утра бригадир отправил всю бригаду на большое поле. В середине рабочего дня он решил перераспределить силы: половину тракторов он оставил на большом поле, которое было вспахано как раз к концу рабочего дня. Другую половину бригадир отправил на маленькое поле, на котором в конце дня остался небольшой невспаханный участок. На другой день бригадир направил туда один трактор, и в течение рабочего дня поле было полностью вспахано. Сколько в бригаде тракторов?
(Авторство аналогичной задачи про косарей приписывается Льву Толстому. Однако некоторые источники утверждают, что на самом деле её придумал некий студент Петров.)
Задачу решили:
56
всего попыток:
159
Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}. Какое наибольшее число различных значений может принимать функция ƒ?
Задачу решили:
182
всего попыток:
229
Собранный мёд заполняет несколько 50-литровых бидонов. Если его разлить в 40-литровые бидоны, то понадобится на 5 бидонов больше, и один из них останется неполным. Если собранный мёд разлить в 70-литровые бидоны, то понадобится на 4 бидона меньше, и один из них тоже останется неполным. Сколько 50-литровых бидонов заполняет собранный мёд?
Задачу решили:
104
всего попыток:
214
На доске в строчку выписаны пять неотрицательных целых чисел A, B, C, D и E, сумма которых равна 2010. Найдите наибольшее значение суммы AB+BC+CD+DE попарных произведений соседних чисел.
Задачу решили:
224
всего попыток:
439
Пассажир метро бежит вниз по эскалатору, идущему вниз, и считает ступеньки. Пробежав весь эскалатор, он насчитал 30 ступенек. Проделав то же самое на эскалаторе, идущем вверх, он насчитал 90 ступенек. Сколько ступенек на неподвижном эскалаторе?
Задачу решили:
109
всего попыток:
316
Две лягушки, большая и маленькая, прыгают по дорожке. Сначала они находятся рядом и первый прыжок совершают одновременно. Затем маленькая лягушка прыгает на 5 см каждую секунду, а большая — на 20 см каждые 3 секунды, но зато после каждого третьего прыжка отдыхает лишние 6 секунд, т.е. два своих следующих прыжка она пропускает. В результате маленькая лягушка то обгоняет большую, то отстаёт от нее. После скольких (своих) прыжков маленькая лягушка опередит большую так, что большая лягушка её больше не нагонит? (Считайте, что все прыжки совершаются почти мгновенно.)
Задачу решили:
60
всего попыток:
99
Про 4 действительных числа a1, a2, b1 и b2 известно, что (a1+b1)/(1+a1b1)=2005, (a2+b1)/(1+a2b1)=4015 и (a1+b2)/(1+a1b2)=1337. Найдите максимальное значение выражения (a2+b2)/(1+a2b2).
Задачу решили:
152
всего попыток:
383
Решите уравнение . В ответе укажите количество его целых решений.
Это открытая задача
(*?*)
Представим отрезок гармонического ряда
Задачу решили:
125
всего попыток:
355
Решите неравенство . В ответе укажите число его целых решений.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|