img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 16
Задача опубликована: 08.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Lec

Два неперекрывающихся квадрата со сторонами a и b (a≠b) имеют общую вершину O. У каждого из них по две вершины лежат на окружности, а через A и B обозначены оставшиеся две вершины (см. рисунок).

Квадраты в круге

Найдите величину угла AOB в градусах, если он острый.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 04.05.24 12:36
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg
Лучшее решение: TALMON (Тальмон Сильвер)

Круги радиуса 1 наложены друг на друга так, что их границы образуют квадратную кружевную салфетку, изображенную на рисунке, причем центры кругов расположены в узлах квадратной решетки.

Кружевная салфетка

Найдите площадь фигуры, являющейся объединением 322 таких кругов. В ответе укажите целую часть этой площади (антье).

Задачу решили: 13
всего попыток: 29
Задача опубликована: 17.05.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Lec

В прямоугольник с целочисленными взаимно простыми длинами сторон вписан прямоугольник с различными целочисленными сторонами так, что все его углы лежат на различных сторонах исходного четырехугольника. Одна из сторон вписанного четырехугольника в 2 раза меньше одной из сторон исходного. Минимально возможный (по площади) такой четырехугольник имеет размеры 10x11 со вписанным четырехугольником 5х10. Найдите вторую минимально возможную площадь исходного четырехугольника.

Задачу решили: 14
всего попыток: 42
Задача опубликована: 03.07.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: геометрияimg

Одни и те же четыре фигуры – два треуольника и два полиомино – складываются двумя способами в виде "большого треугольника", по такому принципу:

1. Все вершины фигур лежат в узлах квадратной сетки.
2. Исходные треугольники касаются острыми углами.
3. В одном случае два полиомино заполняют некоторый прямоугольник, а во втором случае – другой прямоугольник, в котором – о чудо! – оказывается ещё одна лишняя клетка.

Лишняя клетка

На самом деле, "большой треугольник" здесь иллюзорен. Угол AKB в одном случае чуть меньше, а в другом чуть больше 180 градусов на одинаковую величину.
Можно повторить тот же фокус и с другой четвёркой фигур – парой треугольников и парой полиомино, складывая их в "большой треугольник" двумя способами по этому же принципу.
В данном примере площадь треугольника ABC (если предположить, что AB это не ломаная, а отрезок) равна 32,5.
Найдите четвёрку таких фигур с минимальной площадью треугольника ABC ("выпрямленного"), при которой абсолютная величина отклонения угла AKB от 180 градусов будет меньше чем в исходном примере. В ответе введите  эту площадь.
Задачу решили: 22
всего попыток: 29
Задача опубликована: 12.08.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25.

Парабола и четырехугольник

Найдите абсциссу вершины D этого четырехугольника.

Задачу решили: 26
всего попыток: 35
Задача опубликована: 02.09.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D.

Парабола и окружность

Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D. 

Задачу решили: 10
всего попыток: 11
Задача опубликована: 25.11.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Найдите минимальную сумму таких натуральных a и b (a>b), что на эллипсе:

x2/a2 + y2/b2 = 1

лежат ровно 420 точек с целочисленными координатами.

Задачу решили: 6
всего попыток: 34
Задача опубликована: 26.11.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

I. Найдите количество эллипсов

x2/a2 + y2/b2 = 1

(a и b натуральные, a>b, a+b=6630), на каждом из которых лежат ровно 36 точек с целочисленными координатами.

II. То же самое, только a+b=8125 (вместо 6630)

Введите в ответе сумму этих двух количеств (I и II).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.