Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
140
всего попыток:
412
Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?
Задачу решили:
871
всего попыток:
2193
Среди 11 таблеток есть одна поддельная, которая отличается от настоящих только массой, но в какую сторону и насколько — неизвестно. За какое минимальное число взвешиваний таблеток на чашечных весах без гирь можно определить, какая таблетка тяжелее — поддельная или настоящая?
Задачу решили:
527
всего попыток:
1231
Расписание движения требует от водителя междугороднего автобуса, чтобы он проезжал ровно 60 км за любой промежуток времени длительностью ровно 1 час (т.е. в любой момент времени после первого часа своего пути автобус должен быть на расстоянии 60 км от того места, где был час назад). Какое максимальное расстояние сможет проехать автобус за 2 часа 50 минут, если водитель будет строго придерживаться расписания? (Ответ выразите в км, единицы измерения не указывайте.)
Задачу решили:
123
всего попыток:
463
Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
198
всего попыток:
375
Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?
Задачу решили:
299
всего попыток:
397
Про индийского математика-самородка С.А.Рамануджана говорили, что каждое натуральное число было его близким другом. Однажды английский математик Г.Г.Харди сказал ему: "Сегодня я ехал на такси с совершенно неинтересным номером ..." — после чего назвал некое четырёхзначное число. "Почему же неинтересным?" — сразу ответил Рамануджан: "Ведь это наименьшее число, которое может быть представлено в виде суммы двух кубов натуральных чисел двумя различными способами!" Какой был номер такси?
Задачу решили:
129
всего попыток:
1028
В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов? (В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|