Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
242
всего попыток:
672
Найти остаток от деления на 7 числа
Задачу решили:
559
всего попыток:
1600
В спешке не пропустить начало нового сериала, семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама — за 2, сынишка — за 5, а бабушка — за 10 минут. У них есть один фонарик, а мост выдерживает только двоих. За сколько минут все они смогут его перейти при лучшей организации своего движения? Условия для особо придирчивых: Если переходят двое, то они идут с меньшей из скоростей. Идти по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Бросать фонарик нельзя.
Задачу решили:
260
всего попыток:
855
На какое минимальное число остроугольных треугольников можно разрезать квадрат?
Задачу решили:
149
всего попыток:
242
Найти максимальное значение выражения |...|x1−x2|−x3|−x4|...−x998|−x999|, где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.
Задачу решили:
195
всего попыток:
548
Вам нужно попасть в тайную комнату. У входа в неё стоит диск (на картинке синий) с четырьмя отверстиями (на картинке жёлтыми), расположенными в вершинах квадрата. Внутри каждого отверстия спрятан переключатель, имеющий 2 положения: от центра диска (на картинке белое) и к его центру (на картинке чёрное). Разрешается засунуть руки в какие-либо 2 отверстия, пощупать, как стоят переключатели, и переключить один из них или оба. (Ничего не переключать нельзя!) После этого диск приходит в быстрое вращение, так что после его остановки уже нельзя установить, в какие именно отверстия Вы засовывали руки в прошлый раз. Дверь в комнату открывается, если во время вращения диска все переключатели стоят одинаково (все к центру или все от центра). Какое наименьшее число раз нужно засунуть руки в отверстия, чтобы гарантированно попасть в тайную комнату при полном отсутствии везения? Учтите, что исходные положения переключателей неизвестны — они могут стоять вразнобой...
Задачу решили:
236
всего попыток:
589
Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты?
Задачу решили:
157
всего попыток:
570
Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?
Задачу решили:
84
всего попыток:
547
Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?
Задачу решили:
108
всего попыток:
494
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|