Лента событий:
tubaki решил задачу "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
103
всего попыток:
222
В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.
Задачу решили:
135
всего попыток:
292
Сколько существует попарно различных треугольников с целочисленными сторонами и периметром 40?
Задачу решили:
99
всего попыток:
292
Играя в морской бой, Саша стремится расположить все свои корабли внутри прямоугольника наименьшей площади. Сколько клеток составляет площадь такого прямоугольника? (В морской бой играют на поле 10×10, на котором нужно расположить 10 кораблей — один 4×1, два 3×1, три 2×1 и четыре 1×1 — так, чтобы они не соприкасались ни сторонами, ни углами.)
Задачу решили:
93
всего попыток:
174
Биссектрисы углов трапеции делят каждое из её оснований на три равные части. Найдите среднюю линию трапеции, если её высота равна . (Трапеция — это четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.)
Задачу решили:
90
всего попыток:
242
Сад имеет форму треугольника со сторонами 130, 140 и 150 м. Сумма трёх расстояний от домика садовника до каждой из сторон сада составляет S м. Найдите наименьшее значение S.
Задачу решили:
76
всего попыток:
213
В прямоугольном треугольнике точка P лежит на катете BC, а точка Q — на гипотенузе AB. Найдите наименьшую возможную длину незамкнутой ломаной APQ, если известно, что AC=700, BC=2400.
Задачу решили:
69
всего попыток:
128
В треугольнике ABC с площадью 72 один из углов равен 60°, а радиус описанной окружности в 3 раза больше радиуса вписанной, которая касается сторон треугольника в точках K, L и M. Найдите площадь треугольника KLM.
Задачу решили:
100
всего попыток:
214
На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?
Задачу решили:
90
всего попыток:
436
На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
78
всего попыток:
203
На плоскости проведены две окружности с радиусами 5 и 9 так, что расстояние между их центрами равно 2. Какое наибольшее число непересекающихся кругов можно нарисовать на плоскости так, чтобы каждый из них касался обеих окружностей?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|