Лента событий:
avilow решил задачу "REBUSы - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
170
Сколько существует таких целых чисел 0<n<90, что tg(n°) можно выразить с помощью конечного количества квадратных корней (например n=30, 45, 60)?
Задачу решили:
53
всего попыток:
69
Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника. Найдите наибольший из шести углов этих треугольников (в градусах).
Задачу решили:
46
всего попыток:
55
Найти натуральное число n такое, что для углов остроугольного треугольника α, β, γ верно sin(nα)+ sin(nβ) + sin(nγ) < 0.
Задачу решили:
35
всего попыток:
86
Найти количество действительных чисел из замкнутого интервала [0, 2017] таких, что число x×sin(πx) - целое.
Задачу решили:
25
всего попыток:
31
Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков: |OA1|² = |OA0| • |OA2|. Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков: |OA2|² = |OA1| • |OA3|. И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
Задачу решили:
45
всего попыток:
59
В треугольнике ABC sin A : sin B : sin C = 5 : 7 : 9. Найдите cos (A + B).
Задачу решили:
39
всего попыток:
49
sin10x+cos10x=11/36. Найдите sin12x+cos12x.
Задачу решили:
46
всего попыток:
49
tan x + cot x + sec x + csc x = 6, найдите sin x + cos x.
Задачу решили:
41
всего попыток:
41
На горизонтальной плоскости из трех точек отстоящих от основания антенны на 100, 200 и 300 м, углы, под которыми она видна в сумме составляют 90°. Определите высоту антенны.
Задачу решили:
41
всего попыток:
43
В треугольнике углы A, B и C такие, что cos3A+cos3B+cos3C=1. Найти наибольший угол треугольника в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|