img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 79
всего попыток: 110
Задача опубликована: 04.12.13 08:00
Прислал: pvpsaba img
Источник: Грузинская национальная Олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Пусть ABCD квадрат. Точка E лежит на стороне BC, а точка F на стороне CD. Углы AEB = AEF = FEC = 60°. Чему равен угол EAF (в градусах)?

Задачу решили: 37
всего попыток: 41
Задача опубликована: 06.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Дана окружность и прямая линия, которая проходит через ее центр. На окружности отмечена точка, не лежащая на прямой. При помощи одной линейки без делений постройте перпендикуляр от точки к прямой. 

Задачу решили: 45
всего попыток: 153
Задача опубликована: 09.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?

Задачу решили: 61
всего попыток: 143
Задача опубликована: 11.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В 6 узлов клетчатой решетке вбили 6 гвоздей, 4 из которых образуют квадрат 4 на 4, и соединили их замкнутой нитью так, чтобы получился шестиугольник наименьшей возможной площади. Найдите его площадь.

Задачу решили: 58
всего попыток: 208
Задача опубликована: 13.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Нить согнули в три раза, потом снова в три раза, после чего сделали не по сгибам разрез. Два из полученных кусков имеют длину 2 см и 6 см. Какой максимальной могла быть длина нити в сантиметрах.

Задачу решили: 75
всего попыток: 100
Задача опубликована: 16.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В прямоугольном треугольнике ABC угол C = 90°, угол B = 40°. На сторонах AB и BC выбраны такие точки D и E соответственно, что EAD = 5° и ECD = 10°. Найдите угол EDC в градусах.

Задачу решили: 111
всего попыток: 149
Задача опубликована: 18.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Решите уравнение $x^{x^{x^{...}}}=3$ (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.

Задачу решили: 92
всего попыток: 101
Задача опубликована: 20.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Найдите сумму всех чисел, которые в 33 раза больше, чем сумма составляющих их цифр.

Задачу решили: 32
всего попыток: 68
Задача опубликована: 23.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Суду в качестве вещественного доказательства предъявлено 100 одинаковых по весу монет, вес каждой больше 10 г (однако суд не знает, что они одинаковы). К сожалению, имеющиеся в суде весы показывают вес любого груза с отклонением ровно в 1 г — иногда в бóльшую, а иногда в меньшую сторону (и, к счастью, суд знает об этом). При каком наибольшем k эксперт может доказать суду, что среди монет есть не менее k одинаковых?

Задачу решили: 47
всего попыток: 59
Задача опубликована: 25.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2008
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Даны n действительных чисел a1, a2, …, an. Известно, что все попарные суммы ai+aj (i ≠ j) – различны и в порядке возрастания образуют арифметическую прогрессию. Найдите максимально возможное n?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.