img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 4
всего попыток: 5
Задача опубликована: 19.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2.

Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа.

Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы.

Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы.  Здесь φ(S) означает функцию Эйлера. 

Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51.

Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396.

Найдите количество 18-значных сильно ахиллесовых чисел.

Задачу решили: 7
всего попыток: 11
Задача опубликована: 03.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Как известно, последовательность Фибоначчи определяется рекуррентно:

f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1.

Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106.

Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.

Задачу решили: 3
всего попыток: 8
Задача опубликована: 10.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи:

S =1234567891011121314151617181920212223242...

Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее.

Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365.

Найдите ∑f(11k), где 1≤k≤6.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 17.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.

  • При n=1 первый игрок автоматически проигрывает, поскольку не может сделать ни одного хода.
  • При n=2 есть только один ход, который автоматически ведет к победе.
  • При n=3 первый игрок может выбрать один из двух различных ходов, и оба они ведут к немедленной победе.
  • При n=4 есть три варианта хода. Среди них есть один выигрышный ход, когда игрок закрашивает две средние клетки.
  • При n=5 есть четыре варианта хода (они показаны на рисунке красным цветом), но все они ведут к поражению: второй игрок (показан синим цветом) всегда может выиграть.

eu306.png

Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43.

Найдите миллионное значение n, при котором второй игрок всегда может победить.

 

Задачу решили: 3
всего попыток: 3
Задача опубликована: 14.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом.

Проигрывает тот, кто не может сделать очередной ход.

Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c).

Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными.

Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция.

Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 15.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n.

Например, U( 1234567890, 107-10) = 24.

Найдите U(1234567890987654321, 1012-10).

 
Задачу решили: 2
всего попыток: 9
Задача опубликована: 24.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными.

Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32).

Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения:

11 = 2 + 9 = (21×30 + 20×32

11 = 8 + 3 = (23×30 + 20×31)

Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2.

Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641.

Найдите сумму простых q < 1000000, для которых P(q)=2.

Задачу решили: 1
всего попыток: 1
Задача опубликована: 22.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
  • a1 = 6
  • При всех 1 ≤ i < n : φ(ai) ≤ φ(ai+1) < ai < ai+1,
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому  S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108
Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность Голомба {G(n)}  определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n)  вхождений каждого натурального числа n.
Вот несколько первых значений G(n):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 ...

Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30.

Найдите ΣG(2n)для 1 ≤ n < 60.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.