img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MMM добавил комментарий к задаче "Хитрая змейка Рубика" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 25
Задача опубликована: 27.09.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек.

Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков.

Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим  три отрезка:

  • отрезок L1 с концами (27, 44) и (12, 32)
  • отрезок L2 с концами (46, 53) и (17, 62)
  • отрезок L3 с концами (46, 70) и (22, 40)

Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения.

Будем теперь последовательно строить отрезки и подсчитывать их истинные точки пересечения. Чтобы построить n отрезков, нам нужно 4n координат их концов. Будем генерировать эти числа случайным образом с помощью алгоритма Блюма - Блюма – Шуба:

s0 = 290797
sn+1 = sn × sn (mod 50515093)
tn = sn (mod 200)

Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
(t1, t2) и (t3, t4)
Четыре первых числа, сгенерированные нашим алгоритмом, будут t1=127, t2=144, t3=112, t4=132, и концы первого отрезка будут иметь координаты (127,144) и (112,132).

Чтобы количество различных истинных точек пересечения превысило одну тысячу, нужно сгенерировать ровно сто отрезков: действительно, первые 99 отрезков будут иметь 992 различных истинных точек пересечения, а первые 100 отрезков – уже 1003.
Сколько необходимо сгенерировать отрезков, чтобы количество различных истинных точек пересечения превысило миллион?

Задачу решили: 5
всего попыток: 45
Задача опубликована: 04.10.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

9 сентября 2010-го года (по григорианскому календарю) еврейский новый 5771-й год (праздник Рош ха-Шана) совпадает с мусульманским праздником Ид аль-Фитр, отмечаемого после окончания священного месяца рамадан. Оба календаря, еврейский и мусульманский - лунные, а оба праздника приходят на начало лунного месяца (первого еврейского и десятого мусульманского). Однако, мусульманский календарь является чисто лунным, и год всегда содержит 12 месяцев, а еврейский календарь, как и другие древние восточные календари, является лунно-солнечным. К некоторым годам добавляется 13-й месяц, чтобы таким образом быть привязанным и к временам года (так было и в до-исламском арабском календаре). А формула добавления 13-го месяца такая: в каждом цикле из 19-и лет добавляется 13-й месяц к годам с номерами 3,6,8,11,14,17,19 (в китайском календаре 9 вместо 8). Т.к. остаток от деления 5771 на 19 равен 14, то в этом году по еврейскому календарю будет 13 месяцев, а следующий новый год (Рош ха-Шана) будет на целый месяц позже Ид аль-Фитр. Сколько раз в этом тысячелетии (по григорианскому календарю), с 2001-го по 3000-й год, оба праздника совпадут?

Задачу решили: 6
всего попыток: 17
Задача опубликована: 04.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Клетки квадрата 4х4 заполнены цифрами от 0 до 9 таким образом, что суммы цифр в строках, в столбцах и в двух главных диагоналях таблицы равны. Например, в этой таблице


6 3 3 0
5 0 4 3
0 7 1 4
1 2 4 5

такие суммы равны 12.
Сколько есть способов заполнить таблицу 4х4 цифрами от 0 до 9 так, чтобы суммы цифр в строках, в столбцах и в двух главных диагоналях таблицы оказались равны и не превышали 15?

Задачу решили: 2
всего попыток: 4
Задача опубликована: 11.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Для двух натуральных чисел a и b определим последовательность Улама следующим образом:
1.    U(a,b)1 = a
2.    U(a,b)2 = b
3.    U(a,b)k > U(a,b)k-1
4.    U(a,b)k –наименьшее число, которое единственным образом можно представить в виде U(a,b)k = U(a,b)i + U(a,b)j, где i<j<k.
Например, последовательность U(1,2) начинается со следующих чисел:
1, 2, 3 = 1 + 2, 4 = 1 + 3, 6 = 2 + 4, 8 = 2 + 6, 11 = 3 + 8;
Число 5 не принадлежит последовательности, поскольку может быть представлено двумя способами (5 = 1 + 4 = 2 + 3), так же как и число 7 (7 = 1 + 6 = 3 + 4).
Найдите  ΣU(4,4n+1)k для 1≤n≤7, где k = 1011.

Задачу решили: 7
всего попыток: 32
Задача опубликована: 11.10.10 08:00
Прислал: katalama img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Из описания некоего растения: «… его время жизни составляет 20 лет. В первый год плод растения попадает в землю. Первые побеги растения появляются лишь на второй год. Плодоносить растение начинает с четвертого года и ежегодно дает по 1 плоду, которые сразу попадают в землю, и из них вырастают такие же растения. На двадцатый год своей жизни растение плодоносит в последний раз, а на двадцать первый год – погибает». 

Сколько живых растений будет в 99-м году, если в первый год мы посадим один плод этого растения. Только что посаженные плоды за растения не считаются. Также не считаются живыми растения, для которых данный год является 21-м (или больше) годом жизни.

Задачу решили: 7
всего попыток: 18
Задача опубликована: 18.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n обозначим через g(n) число, полученное перестановкой двух последних цифр в начало, например g(153846)= 461538. Оказывается, что для числа 153846 g(n) кратно n. Действительно, 461538=153846×3. Кроме того, g(n)≠n.

Найдите 5 последних цифр суммы всех натуральных n, не превышающих 10100, для которых g(n) кратно n и g(n)≠n.

Задачу решили: 34
всего попыток: 65
Задача опубликована: 25.10.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

В октябре 2010 года пять пятниц, пять суббот и пять воскресений. А сколько таких месяцев с 2001-го по 2100-й годы? 

Задачу решили: 5
всего попыток: 6
Задача опубликована: 25.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим сколькими способами можно представить натуральное число n  в виде суммы степеней 2, используя при этом каждую из степеней не более чем четырежды. Полученное число обозначим через f(n).

Например, f(11)=7, поскольку число 11 можно записать указанным образом ровно семью способами:

11=8+2+1
11=8+1+1+1
11=4+4+2+1
11=4+4+1+1+1
11=4+2+2+2+1
11=4+2+2+1+1+1
11=2+2+2+2+1+1+1

Найдите f(1010).

Задачу решили: 35
всего попыток: 55
Задача опубликована: 01.11.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Если натуральное число и число, записанное в обратном порядке, являются квадратами некоторых натуральных чисел, то такие числа будем называть "квадратами в обе стороны".

Например, число 121 и 400 (лидирующие нули при обратной записи отбрасываются) являются "квадратами в обе стороны". Найдите количество "квадратов в обе стороны" меньших 109

Задачу решили: 13
всего попыток: 17
Задача опубликована: 01.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим прямоугольный параллелепипед со сторонами 84, 21039657. Заметьте, что, записав три измерения этого параллелепипеда в десятичной системе счисления, мы использовали каждую цифру ровно один раз. Будем  называть такой параллелепипед интересным.
Также заметим, что данный параллелепипед обладает еще одним свойством: его объем равен 1705928364, и запись этого числа тоже содержит каждую цифру ровно один раз. Интересный параллелепипед, обладающий этим свойством, будем называть очень интересным.
Найдите наибольший объем очень интересного параллелепипеда.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.