5
|
Задача 1495. Четыре четырёхугольникапостоянный адрес задачи: http://www.diofant.ru/problem/3232/показать код для вставки на свой сайт >> |
Задачу решили:
29
всего попыток:
64
поделиться задачей:
|
|
Задача опубликована:
15.03.17 08:00
Прислал:
TALMON
(Тальмон Сильвер)
Вес:
1
сложность:
1
класс:
8-10
баллы: 100
Темы:
арифметика,
планиметрия
|
Лучшее решение:
levvol
|
У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.